
3/10/19

1

Architectures Explored
What’s inside blockchain, and how it fits in a systems architecture

V3.01, 1 March 2019

Blockchain Explored Series

IBM Blockchain Platform Explored

Fabric Explored

Modeling Applications

What’s New in Tech

Architectures Explored

Blockchain Data Structures
Describing the blockchain using
computer science principles

Operational Considerations
Consensus, integration, security,
business and non-functional
requirements

3/10/19

2

3

Note

• Blockchain implementations vary

• We’ll try and focus on what’s common and point out when implementations vary

4

The Linked List

• Linear collection of data elements

• Each element is linked to the next

• Concept dates from 1955

abc def ghi X

3/10/19

3

5

One-Way Hash Functions

• Any function that can be applied to a set of
data that is guaranteed to produce the same
output for the same input

• One-way means that you can’t derive the input
from the output

• Often, outputs are unlikely to repeat for
different inputs

• Forms the basis of much cryptography

h(abc) = 7859
h(def) = 8693
h’(7859) = ?
h(abc) = 7859

6

Hash chain: A successive application of a hash function

Can combine new data with each successive hash to produce a tamper resistant linked list

The Hash Chain

h(h(h(abc))) = 1859

h(ghi+h(def+h(abc))) = 5783

3/10/19

4

7

How is This Tamper Resistant?

• Any modification to a data element means that the hashes will not match up
• You would need to recreate the downstream chain

abc def +
7859

ghi +
3785 X

h(abc) = 7859 h(def + 7859) = 3785 h(ghi + 3785) = 5939

abc XYZ +
7859

ghi +
3785 X

h(abc) = 7859 h(XYZ + 7859) = 2957
Hash mismatch

8

Applied to Blockchain
• A blockchain is a hash chain (with optimizations that we’ll cover shortly)

• Each element (block) in the linked list is a set of zero or more transactions
• Transactions are an implementation-dependent data object

• First block known as a genesis block
• May contain some identifying string or other configuration metadata

Genesis tx1 +
tx2 +
6645

tx3 +
tx4 +
tx5 +
2311

X

h(Genesis) = 6645 h(tx1 + tx2 +
6645) = 2311

h(tx3 +
tx4 +
tx5 +
2311) = 0484

3/10/19

5

9

Some Problems with This Approach

• In the event of tampering, it can be difficult to identify which transaction was modified (particularly
when there are many transactions in a block)

• It is not feasible to have one transaction per block

• It requires all transaction data in order to retain integrity of chain

• Searching transactions is linear (time consuming)

10

Merkle Tree

• It is possible to optimise the chain data
structure if we arrange it as a tree

• Makes it easier to identify tampering
without sacrificing stability

• Makes it quicker to traverse

• However, this makes it impossible to add new
transactions without re-hashing root nodes

tx1

h(h(h(tx1)+h(tx2)) + h(h(tx3)+h(tx4)))

h(tx1)

tx2

h(tx2)

tx3

h(tx3)

tx4

h(tx4)

h(h(tx1) + h(tx2)) h(h(tx3) + h(tx4))

3/10/19

6

11

Combining Tree and Chain

• Each element in the chain contains:
• A pointer (“Merkle root”) to the tree of transactions
• Other metadata (e.g. timestamp)
• A hash of the previous block’s data (i.e. Merkle root, metadata and hash)

h(Genesis) = 1731

h(meta1 +
1731 +
7693) = 3111

h(meta2 +
3111 +
3785) = 5939

7693

tx
1

tx
2

tx
3

tx
4

3785

tx
5

tx
6

tx
7

Genesis meta1 +
1731 +
7693

meta2 +
3111 +
3785

X

12

Benefits of This Approach

• It allows tampered transactions to be identified easily

• More efficient search within a block

• O(log N) rather than O(N)

• Allows transaction detail to be stubbed

• Bitcoin has a Simplified Payment Verifier (SPV) concept: a type of user that doesn’t have the
entire tree available, just the Merkel roots

• Note it is also possible to checkpoint and archive old blocks, creating a new Genesis block
mid-way through the chain

3/10/19

7

13

• What’s Dave’s balance?

• Does Matt have funds to clear a £1000
transaction? (Assuming no overdraft)

Common Transactions

Transaction Initiator Receiver Amount

1 Create a/c Cash Matt £1000

2 Create a/c Cash Dave £2000

3 Transfer Matt Dave £100

4 Create a/c Cash Ant £500

5 Transfer Ant Matt £50

6 Transfer Ant Dave £200

7 Transfer Dave Matt £100

8 Transfer Dave Ant £50

9 Transfer Matt Ant £50

14

World State

• It is clearly not feasible to reparse the entire transaction log to complete a new transaction
• Blockchains often include an associated database (world state) – e.g. Hyperledger Fabric
• Transactions become a set of creates, reads, updates and deletes of records in this data store

Matt.balance = £1000
Dave.balance = £2150
Ant.balance = £350

Transaction Initiator Receiver Amount

1 Create a/c Cash Matt £1000

2 Create a/c Cash Dave £2000

3 Transfer Matt Dave £100

4 Create a/c Cash Ant £500

5 Transfer Ant Matt £50

6 Transfer Ant Dave £200

7 Transfer Dave Matt £100

8 Transfer Dave Ant £50

9 Transfer Matt Ant £50

3/10/19

8

15

Unspent Transaction Outputs

• Some blockchains (e.g. Bitcoin) don’t maintain balances
• Transactions are linked to earlier transactions using an ID (TXID)
• Outputs always equal inputs
• Unspent funds are marked as an “Unspent Transaction Output” (UTXO)
• Only UTXOs can be used as inputs (to prevent double spending)
• Your “balance” is the aggregation of all of your UTXOs

• In Bitcoin, if your application doesn’t specify the UTXO output then the miner gets the excess!

Matt sends £40 to Dave

Matt
has

£100
Input

Out 1 Dave has £40

Out 2 Matt’s £60 UTXO

Input

Out 1 Ant has £20

Out 2 Matt’s £40 UTXO

Matt sends £20 to Ant

16

How Events are Used in Blockchain

• In computing, an event is an occurrence that can trigger handlers
– e.g. disk full, fail transfer completed, mouse clicked, message received,

temperature too hot…

• Events are important in asynchronous processing systems like blockchain

• The blockchain can emit events that are useful to application programmers
– e.g. Transaction has been validated or rejected, block has been added…

• Events from external systems might also trigger blockchain activity
– e.g. exchange rate has gone below a threshold, the temperature has

gone up, a time period has elapsed…

txn txn txn
!

New
txn

New txn
handler

Transfer
confirmed

Application

3/10/19

9

Blockchain Data Structures
Describing the blockchain using
computer science principles

Operational Considerations
Consensus, integration, security,
business and non-functional
requirements

18

• These data structures are just bytes on disk

• Can still be manipulated or destroyed (e.g. by
a DB admin)

• Proof (and trust) in the blockchain comes from
the power of the network…

The Power of the Network

3/10/19

10

19

Network Nodes

• A blockchain network comprises a set of nodes that share information
• Usually peer-to-peer
• Some blockchains are worldwide, others are private to a business network
• It might make sense to have one node per business network participant, but this is not necessarily so

• Responsibilities include
• Holding and maintaining the ledger
• Receiving transactions from applications (and other nodes)
• Validating transactions
• Notifying applications about the outcome of submitted transactions

• There is an assumption that some nodes might be malicious!
• Different networks require different tolerances for malicious behaviour

20

The Art of Maintaining a Consistent Ledger

• Keeping nodes up-to-date

• Fixing any peers in error

• Ignoring all malicious nodes

before after

CONSENSUS

abc def

abc

abc abc

abc XYZXYZ

3/10/19

11

21

Consensus Algorithms

• There are lots of ways of achieving this
• Proof of Work (e.g. Bitcoin, Ethereum)
• Proof of Stake (e.g. NXT)
• Proof of Elapsed Time (e.g. Sawtooth)
• BFT-based (e.g. Iroha)
• Apache Kafka/Zookeeper-based (e.g. Fabric)

• Different algorithms have different qualities of service
• Tolerances for malicious behavior
• Compute requirements
• Performance characteristics
• Need for intrinsic incentives

22

One of Many Transaction Flow Implementations

2. The transaction is shared
around the network

4. The block’s transactions
are executed and output

stored in a delta

△

5. The network attempts to
agree the correct result

△?△?

△?△?
△?

△?

△?
△?

3. A designated peer creates a
block containing the transaction

1. The application submits a
request to invoke a

transaction

6. If there is agreement, the
correct output is applied to

the world state

3/10/19

12

23

A Note on Cryptographic Mining

• Cryptographic Mining is a by-product of Proof of Work (PoW)
• It makes no sense with other consensus mechanisms

• In PoW, nodes show they are legitimate by proving to other nodes that they have burned electricity
• They do this by revealing the answer to difficult cryptographic puzzles
• This causes other nodes to add the solver’s version of events (block) to their chain

• The first solver (i.e. the producer of the block) gets rewarded
• A bounty of 12.5 bitcoins (this halves every 210,000 blocks)
• Any transaction fees present

• The Bitcoin community refers to this “mining”, as running a node can occasionally result in Bitcoin rewards

24

Integrating with Existing Systems – Possibilities

Transform

Existing
systems

1. System
events

2. Blockchain
events

4. Call out to existing systems

3. Call into blockchain network
from existing systems

Blockchain network Existing
systems

!
!

3/10/19

13

25

• Blockchain is a network system of record

• Two-way exchange

– Events from blockchain network create

actions in existing systems

– Cumulative actions in existing systems

result in Blockchain interaction

Integrating with Existing Systems – Using Middleware

• Transformation between blockchain and existing systems’ formats

– GBO, ASBO is most likely approach

– Standard approach will be for gateway products to bridge these formats

– Gateway connects to peer in blockchain network and existing systems

• Smart contracts can call out to existing systems

– Query is most likely interaction for smart decisions

• e.g. all payments made before asset transfer?

• Warning: Take care over predictability: transaction must provide same outputs each time it executes…

26

Non-determinism in blockchain

• Blockchain is a distributed processing system
– Smart contracts are run multiple times and in

multiple places
– As we will see, smart contracts need to run

deterministically in order for consensus to work
• Particularly when updating the world state

• It’s particularly difficult to achieve determinism with
off-chain processing
– Implement oracle services that are guaranteed to

be consistent for a given transaction, or
– Detect duplicates for a transaction in the

blockchain, middleware or external system

getDateTime()

getExchangeRate()

getTemperature()

random()

incrementValue
inExternalSystem(…)

3/10/19

14

27

Security: Public vs. private blockchains

• Some use-cases require anonymity, others require privacy
– Some may require a mixture of the two, depending on the characteristics of each participant

• Most business use-cases require private, permissioned blockchains
– Network members know who they’re dealing with (required for KYC, AML etc.)
– Transactions are (usually) confidential between the participants concerned
– Membership is controlled

• For example, Bitcoin
• Transactions are viewable by

anyone
• Participant identity is more

difficult to control

Public blockchains Private blockchains

• For example, Hyperledger
Fabric

• Network members are known
but transactions are secret

28

Security: Real-world vs. digital identity

CA

CA

R

U

U

• Consider real-world identity documents…
– The issuers of the identity documents are trusted third

parties (e.g. passport office)
– There is usually a chain of trust (e.g. to get a bank card

you need a drivers license or passport)
– Identity documents are often stored in wallets

• In the digital world, identities consist of public/private key pairs
known as certificates

– Identity documents are issued by trusted third parties
known as Certificate Authorities (CAs)

• Private blockchain networks also require CAs
– So network members know who they’re dealing with
– May sit with a regulatory body or a trusted subset of

participants

3/10/19

15

29

Security: Encryption and Signing

• Cryptography basics
– Every member of the network has (at least) one public key and one private key
– Assume that every member of the network knows all public keys and only their own private

keys
– Encryption is the process applying a transformation function to data such that it can only be

decrypted by the other key in the public/private key pair
– Users can sign data with a private key; others can verify that it was signed by that user

• For example
– Alice can sign a transaction with her private key such that anyone can verify it came from her
– Anyone can encrypt a transaction with Bob’s public key; only Bob’s private key can decrypt it

• In private, permissioned blockchains
– Transactions and smart contracts can be signed to verify where they originated
– Transactions and their payloads can be encrypted such that only authorized participants can

decrypt

30

Blockchain

Blockchain
User A

signs / encrypts
transactions

Blockchain
User B

Certificate Authorities and Blockchain

U U

uses

Certificate
Authority

Client
Application

SDK
verifies/decrypts
transactions

Certs
requests certificates

issues certificates

Client
Application

SDK

uses

R

3/10/19

16

31

Business Considerations

• As a B2B system, blockchain adds a number of aspects that are not typical in other projects:
– Who pays for the development and operation of the network?
– Where are the blockchain peers hosted?
– When and how do new participants join the network?
– What are the rules of confidentiality in the network?
– Who is liable for bugs in (for example) shared smart contracts?
– For private networks, what are the trusted forms of identity?

• Remember that each business network participant may have different requirements (e.g. trust)
– Evaluate the incentives of potential participants to work out a viable business model

• Mutual benefit → shared cost (e.g. sharing reference information)
• Asymmetric benefit → money as leveler (e.g. pay for access to KYC)

32

Trade-offs Between Non-Functional Requirements

Consider the trade-offs between
performance, security and resiliency!

Performance
o The amount of data being shared
o Number and location of peers
o Latency and throughput
o Batching characteristics

Security
o Type of data being shared, and with whom
o How is identity achieved
o Confidentiality of transaction queries
o Who verifies (endorses) transactions

Resiliency
o Resource failure
o Malicious activity
o Non-determinism

3/10/19

17

33

Non-Functional Requirements
Multi-tenant Cloud

Low Controls

Single Site Development

SaaS

Constrained

Monolithic

Higher re-use

Proven

Low

Low

Low

Dedicated

High Controls

High Availability & DR

On-Premise

Ready For Growth

Highly Modular

Custom Build

Leading Edge

High

High

High

Isolation

Security

Resilient Design

Dev Options

Sized For Growth

Componentisation

Re-Use

Production Readiness

Blockchain Network Complexity

Blockchain Network
Security/Privacy Complexity

Blockchain SC Complexity

Adjust the sliders with
the client early in the
project so all parties are
aligned on the
expectations of
robustness, isolation,
security controls etc. as
all these factors have
material impact on the
cost and complexity of
the solution.

$ $$$

34

Summary

• Blockchain builds on basic computer science concepts:
• Linked Lists
• Hash Functions
• Peer-to-peer networks

• Identify key operational considerations
• Consensus is the art of maintaining a consistent ledger
• It is possible to integrate with existing systems, but take care over determinism
• Security requirements solved through techniques such as encryption and signing
• Also consider business and non-functional requirements

3/10/19

18

Thank you

www.ibm.com/blockchain

developer.ibm.com/blockchain

www.hyperledger.org

© Copyright IBM Corporation 2017. All rights reserved. The information contained in these
materials is provided for informational purposes only, and is provided AS IS without warranty
of any kind, express or implied. Any statement of direction represents IBM's current intent, is
subject to change or withdrawal, and represents only goals and objectives. IBM, the IBM
logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product,
or service names may be trademarks or service marks of others.

