

IBM Blockchain Hands-On
Vehicle Lifecycle Lab

Lab One

IBM Blockchain

Hyperledger Fabric Labs Page 2

Contents

CONTENTS 2
INTRODUCTION TO THE VEHICLE LIFECYCLE LAB .. 3
RUNNING THE LAB ... 6

1.1. ORDERING THE CAR .. 6
1.2. MANUFACTURING THE CAR ... 9
1.3. INSURING THE CAR ... 12

COOL STUFF 17
1.4. INTERNET OF THINGS INTEGRATION ... 17
1.5. ANALYTICS .. 21

UNDER THE HOOD ... 23
1.6. MODELLING THE SCENARIO .. 23
1.7. HOW THE APPLICATIONS WORK .. 26

NEXT STEPS 28
APPENDIX A. NOTICES .. 29
APPENDIX B. TRADEMARKS AND COPYRIGHTS ... 31

IBM Blockchain

Hyperledger Fabric Labs Page 3

Introduction to the Vehicle Lifecycle Lab

This lab allows you to experience a blockchain solution from the point of view of a set of end-users, and in doing
so learn about key blockchain concepts. It is not meant to be a technical introduction to blockchain, but will
instead focus on the properties of the business network and value that blockchain brings.

The use-case we will work through is one that demonstrates the lifecycle of a new car, from the manufacturing
and purchasing through to delivery and insurance. It is a good blockchain use-case because there is a defined
business network and an identifiable need for trust between the participants of the network.

In this lab, you will be playing the role of the four personas who use the vehicle lifecycle system:

- Paul - the buyer/owner of a car
- Mike - an employee for the car manufacturer (“Arium”)
- Debbie - an administrator for the regulator called the Vehicle & Drivers Authority (VDA)
- Tommen - an Insurer from an insurance company called Prince

These personas together work on ordering, building, transferring ownership of a vehicle while keeping all the
other parties in the network updated and building the trust between them to allow them to work together
efficiently.

In this lab, each user’s application will be represented by a separate tab in our web browser; of course, in a real
blockchain network each user will be running on different systems in different locations, although all connecting
in to the same (but distributed) blockchain network.

Start here. Instructions are always shown on numbered lines.

1. If it is not already running, start the virtual machine for the lab. The instructor will tell you how to do
this if you are unsure.

2. Wait for the image to boot, and for the blockchain application and associated services to start. This
happens automatically but might take several minutes. The image is ready to use when the web browser
is visible and eight tabs fully loaded, as per the screenshot below. Note: Sometimes the insurance tab is
not fully loaded, so click reload to refresh the page.

IBM Blockchain

Hyperledger Fabric Labs Page 4

While the virtual machine is starting, let’s recap a few blockchain concepts and introduce the scenario.

The most generally accepted definition of a blockchain is of a shared, replicated ledger.

Ledgers have been around for hundreds of years and are records of what a business has done. They’re
important systems of record because they describe a business’s inputs and outputs and thereby give an
indication of its worth. Essentially, they are a log of transactions – a transaction being a change in state
of an asset.

The problem with ledgers is that each one is owned by a single business, which means that when one
business transacts with another, ledgers can get out of sync. What happens when the transaction I’ve
recorded on my ledger doesn’t tally with the transaction you’ve recorded on your ledger? Disputes
inevitably occur which need to be resolved through a reconciliation process. This can be slow and
expensive.

By having a shared ledger it means that all participants of the business network see the same ledger. By
replicating it across the business network, it means that the ledger is not held in any one single place,
which would otherwise make it vulnerable to outages and malicious attack.

IBM Blockchain

Hyperledger Fabric Labs Page 5

Consider the business network that surrounds the purchase and ownership of a car. Today, each
participant (for example, manufacturer, insurer or regulator) has their own ledger and the processes
that allow them to interact with each other varies from company to company, and can be time
consuming to complete. Connectivity between participants is typically done point-to-point using a
variety of processes – some manual or slow (e.g. sending a letter), and some automated (e.g. file, REST
API, B2B messaging). This plethora of processes is expensive to maintain and can be vulnerable to
attack.

In this scenario we will replace these disparate ledgers with a single blockchain, and the individual
business processes with a single shared business process. By doing this we will make the overall process
much quicker and less prone to error.

We will experience the solution through the eyes of four key members of the business network: a
private purchaser, the manufacturer, the regulator and the insurer.

We will start by looking at the ordering process, as experienced by the buyer.

IBM Blockchain

Hyperledger Fabric Labs Page 6

Running the lab

1.1. Ordering the car

3. If it is not already selected, Switch to the “Ionic App” tab on the web browser (running at
localhost:8100).

Note that Paul’s web page is intended to be viewed as a mobile app; you might want to ungroup this tab
from the others by dragging the tab’s title bar off from the others, and resizing the window to make it
easier to view and navigate as a mobile app.

4. In Paul’s app, click ‘Build Your Car’.

IBM Blockchain

Hyperledger Fabric Labs Page 7

5. Swipe left and right to decide which car to build, and then decide the options on Paul’s car.

6. Once you have decided on each of Paul’s options, click ‘Purchase and Build’.

7. Once you place the order, switch to the “Blockchain – VDA” tab (localhost:6001/dashboard).

As you will recall, the VDA is the regulator who requires notification of all transactions that occur within
the business network. Debbie, who works for the regulator, has a dashboard running on her PC that
shows all transactions as they occur.

You will immediately see the VDA dashboard update itself with the latest transaction.

IBM Blockchain

Hyperledger Fabric Labs Page 8

If you look at the “Recent Transactions” log at the bottom of the page, you will see two new transactions
listed: a “PlaceOrder” transaction submitted by Paul Harris, and an “UpdateOrderStatus”
acknowledgement from Arium Vehicles, our manufacturer.

Look in the blue section above this log and you will see those transactions represented graphically as a
chain, with the most recent transactions on the right. This is a representation of our blockchain, and the
regulator can see everything that is stored on it.

IBM Blockchain

Hyperledger Fabric Labs Page 9

As you will recall, the blockchain is our transaction log which is shared (with appropriate privacy and
permissioning) between the participants of our business network. Each block in this chain could
potentially actually contain multiple transactions, but here you’ll just see each unique transaction inside
its own block.

8. Click on ‘Asset activity’ within the VDA dashboard.

This is an alternative view of the ledger that shows all the transactions that have occurred, and the
participants involved.

1.2. Manufacturing the car

9. Switch to the “Blockchain – Manufacturer” tab (localhost:6002/dashboard).

This is the dashboard that Mike, who works for Arium, uses. He does not have full visibility into the
entire blockchain that the regulator requires, but can see the parts of it that pertain to Arium:
specifically, he has visibility into all the orders that are coming in so that he can control the
manufacturing process.

IBM Blockchain

Hyperledger Fabric Labs Page 10

The “Currently in Production” section of this page shows those orders that have been received and the
cars that have recently been built. The left-most order in this section will be the car that Paul recently
ordered.

10. Click Start Manufacture underneath Paul’s order to start the business process to build a car.

The production process has (of course) been simulated and will take place over the next several
seconds; the vehicle will be ‘built’ and blockchain transactions submitted that record status at key
milestones of the production process. In a real network, different automated plant systems will trigger
these events, which are signed off by the manufacturer, and the issuance of the Vehicle Identification
Number might be signed off by the regulator.

IBM Blockchain

Hyperledger Fabric Labs Page 11

11. As the car is being built, switch back to the VDA dashboard to see these key milestones being

represented on the unfiltered blockchain.

IBM Blockchain

Hyperledger Fabric Labs Page 12

12. Also note how the Manufacturer’s view changes as the vehicle is being built, with icons changing to
green as those parts of the process are completed.

1.3. Insuring the car

As Paul takes ownership of his new car, we will give him the option to insure it. His insurance company offers a
discount if he chooses to provide the insurance company with frequent details of the car’s location and other
things.

The manufacturer fits the car with a collection of IoT devices, including GPS, air and engine temperature sensors,
acceleration information and light information, which can give the insurer information on how the car is being
driven, and potentially alert relevant parties if the car is involved in a crash.

13. Switch to the Insurer dashboard (localhost:4200/overview). Ensure that the ‘Overview’ tab is selected.

IBM Blockchain

Hyperledger Fabric Labs Page 13

Tommen works for Prince Insurance and this is his dashboard. He requires another subset of
information from the blockchain and this view is represented here. He can see information on the cars
for which his company is an insurer, and can also approve new polices. (In reality, this latter part can be
automated.)

14. Switch back to our car buyer’s “Ionic App”. After the car has been delivered scroll down to the bottom,
and click the “Insure Me” button.

15. Click “Allow Location Access” if a popup appears; Paul is willing to share the IoT device’s location with
the insurance company.

16. Switch back to the “Insurer” view (localhost:4200/overview).

17. Click the “Approve Insurance” button. If the button does not appear, refresh the Insurer view tab.

IBM Blockchain

Hyperledger Fabric Labs Page 14

18. Wait for the approval to be logged on the blockchain.

Paul is now insured by the insurance company.

19. Review the ‘Customers’ tab to see details of Paul’s policy.

At the top of the page you can see basic details of Paul’s policy including his address and car information.

Underneath this is the set of raw readings from the IoT devices attached to Paul’s car. This is useful information
for debugging; in reality the blockchain is not used to share complete data streams from the IoT sensors as the
amount of data is too great and is not relevant to be shared in its entirety.

IBM Blockchain

Hyperledger Fabric Labs Page 15

However, what would be relevant is the analysis of key events in the IoT stream. For example, if the acceleration
is shown to be greater than (for example) 2G, this might indicate a crash event that the insurer might care
about.

This is shown as a set of alerts on the right hand side of the insurer’s customer view:

Without a real sensor tag connected into the application, the information displayed here is either blank or
mocked up. In the next section we will inject data into the application using internet of things integration.

IBM Blockchain

Hyperledger Fabric Labs Page 16

It is possible to connect a real sensor tag so that its information is
displayed in the Insurer view; we have tested using a Texas Instruments
SimpleLink Bluetooth SensorTag. To use this, you need to download the TI
SimpleLink Starter app to a nearby mobile device, use it to discover the
sensor via Bluetooth, note down the unique address of the tag and enable
the “Push to cloud” option to submit the sensor readings so that they can
be read by the IBM Watson IoT platform. Then you need to update the
“IBM IoTP Test Device” node in the Node-RED flow to monitor the readings
from the unique address of the tag from the cloud. Remember to redeploy
the Node.RED flow.

IBM Blockchain

Hyperledger Fabric Labs Page 17

Cool Stuff

In this section, we’re going to look at how the scenario can be enhanced by bringing blockchain
together with internet of things and analytics.

1.4. Internet of Things Integration

We will start by looking at how sensor data from the car makes its way into the blockchain. To
do this we will use an integration tool called Node-RED. This includes a graphical interface to
describe how data flows from input sources (e.g. a sensor) to output sources (e.g. the
blockchain).
Node-RED has connectors for sending data to, and receiving data from, a blockchain running
Hyperledger Composer. It also has connectors for receiving data from the IBM Watson IoT
platform (for sensor tag integration). We can also generate fake sensor data for testing, in the
absence of a physical sensor device.

20. Switch to the Node-RED tab (localhost:1880).

The main window shows the flow of how data from devices is mapped to blockchain events. The tabs
along the top show the different flows that are deployed. Down the left hand side you can see the
available connectors for wiring into the flow. The right hand-side contains the properties of the selected
connector and debug information.

(Note that if you make any changes to the flow, you need to press the “Deploy” button to let them take
effect.)

21. Ensure that the “IoT Flow” tab in Node-RED is selected.

IBM Blockchain

Hyperledger Fabric Labs Page 18

There are some interesting things to note in this flow.

22. Look at the flow path that runs between the “IBM IoTP Test Device” node to the “submit addusagevent

tx” flow. This takes readings from a real sensor device and publishes any interesting events to the
blockchain.

23. Double click the “Set Contexts” node.

This shows the thresholds for sending interesting events to the blockchain. For example, if the
acceleration is greater than 2.2G, this causes a crash event to be sent to the blockchain.

IBM Blockchain

Hyperledger Fabric Labs Page 19

24. Look at the set of connectors next to the “DEBUGGING INPUTS” section: PUSH CONNECT ATTEMPT,

PUSH OVERHEATED, PUSH OIL FREEZING and PUSH CRASH.

These connectors allow us to simulate an interesting event occurring, in the absence of a real device.

25. Click the rounded square button next to the PUSH CONNECT ATTEMPT connector.

You should see a message saying that data was successfully injected into the flow.

IBM Blockchain

Hyperledger Fabric Labs Page 20

26. Switch to the Insurer tab (localhost:4200), and notice under “Sensor Test” that the vehicle sensor is now

connected.

27. Switch back to the Node-RED tab (localhost:1800), and click the button next to the PUSH OVERHEATED
node to send an event to the blockchain which denotes Paul’s engine overheating.

You should again see a “Successfully injected” message.

28. In the Insurer view you should see an alert that reveals this event to the insurer.

29. Try invoking the other events too (OIL FREEZING, CRASH) to see their effect.

More details on the IBM Watson IoT Platform can be found on a pre-loaded tab in the web browser
(https://i5l9uv.internetofthings.ibmcloud.com/dashboard/#/ibmssolanding).

IBM Blockchain

Hyperledger Fabric Labs Page 21

1.5. Analytics

It is possible to use the information stored on the blockchain to provide insight on aggregate usage
patterns to interested authorized parties. This gives the power of data analytics on top of the benefits of
a blockchain, as a verifiably clean source of information to analyze.

30. Switch back to the Manufacturer view tab (localhost:6002) and click the “Reports” link.

The engine overheated events show in this view. These events were captured in the blockchain and the
manufacturer role has permission see this type of event. The manufacturer wishes to detect trends in
engine overheated failures in order to determine if a factory defect is causing this condition.

 The regulator in this scenario can also run analytics on the transactions on the blockchain to look for

suspicious behavior that the smart contract was not designed to prevent from a single invocation.

31. In the Vehicle & Driver Authority dashboard (localhost:6001/dashboard) click the “Suspicious Vehicles”
tab near the top.

IBM Blockchain

Hyperledger Fabric Labs Page 22

 Here we can see that by performing analytics on the blockchain dataset, we have found a number of

vehicles with associated suspicious transactions that may warrant further investigation.

32. Click on ‘Mileage anomaly’ in the list of suspicious vehicles.

This shows a list of the transactions that are associated with this anomaly. In this instance, the mileage
of the vehicle may not match with insurance records - or has even has decreased from previous
records.

IBM Blockchain

Hyperledger Fabric Labs Page 23

Under the Hood

In the final section of the lab, we will briefly consider how the scenario was put together. If you
wish to find out more about the tools used to create this application, consider completing a
follow-on lab; ask the instructor for details.

1.6. Modelling the Scenario

All blockchain use-cases can be described in terms of a set of assets (the digital representation of some
tangible or intangible object that holds value), participants (who wish share information with other
participants in a trustworthy way) and transactions (which cause the assets to change state).

In our example, the primary asset is the car (obviously), the participants are the owner, manufacturer,
regulator and insurer, and as we’ve seen, there are several transaction types as the car moves through
its lifecycle.

These assets, participants and transactions can be modelled in a Linux Foundation tool called
Hyperledger Composer, and leveraged through the IBM Blockchain Platform.

It is useful to develop a model of these concepts as it provides a neat abstraction layer between the
business problem being solved and the technical complexities of the underlying blockchain – in much
the same way as a compiler shields the programmer from the details of the underlying machine code.

33. Switch to the Hyperledger Composer Playground tab in the web browser (localhost:8080/login).

34. Dismiss the welcome dialog by clicking “Let’s Blockchain!”.

35. Scroll to the bottom of the “My Wallet” screen to see details of our deployed blockchain network
(vehicle-lifecycle-network. Click ‘Connect now’.

IBM Blockchain

Hyperledger Fabric Labs Page 24

Once the Playground has connected to the blockchain, you will see details of the vehicle lifecycle
network.

Along the top of the screen are two tabs: “Define” which shows the files used to model the network,
and “Test” that allows authorized users (an administrator “admin” - by default) to invoke transactions.

36. With the Define tab selected, click the filenames down the left hand side of the screen to view the

contents of the files that comprise the model, transaction logic, access control lists and documentation.

IBM Blockchain

Hyperledger Fabric Labs Page 25

We will go into details of what these files do in a follow-on lab.

37. With the Test tab selected, click the registries down the left hand side of the screen to view the
instances of the assets, participants and transactions that have been created, and their current state.

38. Click ‘All Transactions’ to view the Transaction Historian. This shows you every transaction that has been
recorded on the blockchain that the current user (‘admin’) has authority to see.

39. Click on any transaction to view details of it.

IBM Blockchain

Hyperledger Fabric Labs Page 26

1.7. How the Applications work

While the Playground can be used to test our blockchain scenario, our end-users use mobile apps and
dashboards to interact with the running blockchain.

From the files that model this network and implement the transactions, Hyperledger Composer can help
this in two ways. Firstly, the models can be used to create skeleton applications that make it easier to
develop the end-user applications. Secondly, the models can also be used to generate RESTful APIs that
allow client applications and integration middleware to interact with the blockchain.

We will now look at the set of RESTful APIs that have been generated for this scenario.

40. Select the Hyperledger Composer REST server tab (localhost:3000/explorer).

IBM Blockchain

Hyperledger Fabric Labs Page 27

This view shows the REST interface that has been generated from the deployed vehicle lifecycle model.
End-user applications and integration middleware can invoke these applications by sending HTTP
requests that invoke these APIs.

This is how the Node-RED flows interact with the blockchain. Our end-user applications (Paul’s mobile
app, the VDA view, Insurer dashboard etc.) can also interact in this way, although it is possible for
Javascript client applications to instead import (require) a Javascript module that interacts the
blockchain in a similar way.

41. Review the different APIs available; feel free to try invoking them from the web front end to see what

effect it has on the blockchain, on end-user applications and on Playground views. For example… scroll
to the bottom of the list, and click on “Vehicle” to expand its available REST calls - then click on “Get
/Vehicle”.

IBM Blockchain

Hyperledger Fabric Labs Page 28

Next Steps

In this lab you have experienced a live blockchain solution through the eyes of four participants of a
vehicle network: a buyer/owner, manufacturer, regulator and insurer. A blockchain can be used to
great effect in this business network because there is a clear need to share information and value in
participants being able to trust the information they see.

Where you go from here is up to you.

If you have a technical background, consider finding out more about the Hyperledger Fabric and
Composer technologies and the blockchain development experience.

If you are interested in the potential benefits of blockchain in your business, IBM has a bunch of
services that can help. Start by going to www.ibm.com/blockchain.

Important! Be sure to cleanup the hyperledger fabric environment for subsequent labs. Perform the
following at the command prompt in the VLD directory:

a. Open a terminal window right clicking on the terminal icon on the left-hand
navigation pane of the Ubuntu Linux desktop. Select New Terminal and a new terminal
window will appear.

b. cd VLD
c. ./stopAll.sh

IBM Blockchain

Hyperledger Fabric Labs Page 29

Appendix A. Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not
in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not
part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements

IBM Blockchain

Hyperledger Fabric Labs Page 30

will be the same on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental. All references to fictitious companies or
individuals are used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

IBM Blockchain

Hyperledger Fabric Labs Page 31

Appendix B. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United
States, other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp.
and Quantum in the U.S. and other countries.

IBM Blockchain

Hyperledger Fabric Labs Page 32

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without

warranty of any kind, express or implied. IBM shall not be

responsible for any damages arising out of the use of, or otherwise

related to, these materials. Nothing contained in these materials is

intended to, nor shall have the effect of, creating any warranties or

representations from IBM or its suppliers or licensors, or altering

the terms and conditions of the applicable license agreement

governing the use of IBM software. References in these materials

to IBM products, programs, or services do not imply that they will

be available in all countries in which IBM operates. This

information is based on current IBM product plans and strategy,

which are subject to change by IBM without notice. Product

release dates and/or capabilities referenced in these materials may

change at any time at IBM’s sole discretion based on market

opportunities or other factors, and are not intended to be a

commitment to future product or feature availability in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks

of IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Hyperledger Fabric Labs Page 33

IBM Blockchain Hands-On
Hyperledger Fabric SDK
Development:
Writing Your First Application
Lab Two

IBM Blockchain

Hyperledger Fabric Labs Page 34

Contents
OVERVIEW 35
WRITING YOUR FIRST HYPERLEDGER FABRIC APPLICATION .. 36

1.1. INSTALL SAMPLES, BINARIES, AND DOCKER IMAGES ... 36
1.2. START THE TEST NETWORK .. 37
1.3. HOW APPLICATIONS INTERACT WITH THE NETWORK .. 38
1.4. UPDATING THE LEDGER .. 42
1.5. LAB CLEANUP ... 43

APPENDIX A. APPENDIX A. NOTICES .. 44
APPENDIX B. TRADEMARKS AND COPYRIGHTS .. 46

IBM Blockchain

Hyperledger Fabric Labs Page 35

Overview
The purpose of this lab is to enable you to write your first blockchain application by introducing you to the
Hyperledger Fabric SDK. This lab is based on the “fabcar” Hyperledger Fabric sample:
http://hyperledger-fabric.readthedocs.io/en/release-1.3/write_first_app.html

IBM Blockchain

Hyperledger Fabric Labs Page 36

Writing your First Hyperledger Fabric Application
At the most basic level, applications on a blockchain network are what enable users to query a ledger
(asking for specific records it contains), or to update it (adding records to it).

Our application, composed in JavaScript, leverages the Node.js SDK to interact with the network (where
our ledger exists). This tutorial will guide you through the three steps involved in writing your first
application.

1. Install Samples, Binaries, and Docker Images. While we work on developing real installers for the
Hyperledger Fabric binaries, we provide a script that will download and install samples and binaries to
your system. We think that you’ll find the sample applications installed useful to learn more about the
capabilities and operations of Hyperledger Fabric.

2. Starting a test Hyperledger Fabric blockchain network. We need some basic components in our
network in order to query and update the ledger. These components – a peer node, ordering node and
Certificate Authority – serve as the backbone of our network; we’ll also have a CLI container used for a
few administrative commands. A single script will launch this test network.

3. Learning the parameters of the sample smart contract our app will use. Our smart contracts
contain various functions that allow us to interact with the ledger in different ways. For example, we can
read data holistically or on a more granular level.

4. Developing the application to be able to query and update records. We provide two sample
applications – one for querying the ledger and another for updating it. Our apps will use the SDK APIs to
interact with the network and ultimately call these functions.

After completing this tutorial, you should have a basic understanding of how an application, using the
Hyperledger Fabric SDK for Node.js, is programmed in conjunction with a smart contract to interact with
the ledger on a Hyperledger Fabric network.

1.1. Install Samples, Binaries, and Docker Images

1 Start a terminal
2 cd ~
3 Your instructor has already performed this step. However for future reference, you can enter the

following command to pull down binaries, docker images, and samples. You do not need to enter the
command below as this has already been performed for you on the VMWare image used for these
labs. If for some reason, you do not have a /home/blockchain/fabric-samples directory, then, issue
the command below to pull down the samples.

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.3.0

4 cd ~/fabric-samples/first-network
5 Issue the following command to shutdown any existing blockchain networks. Answer ‘Y’ to the

Continue prompt.

./byfn.sh down

IBM Blockchain

Hyperledger Fabric Labs Page 37

6 Issue the following command to kill any active or stale containers:

 docker rm -f $(docker ps -aq)

7 Issue the following command to clear any cached networks. Answer ‘Y’ to the Continue prompt.

 docker network prune

1.2. Start the Test Network

1 Start a terminal
2 cd ~/fabric-samples/fabcar/
3 Issue the following command which can take a minute or so to complete. The ‘node’ parameter will

start the Node.js chaincode container vs. the Go chaincode container.

./startFabric.sh node

4 For the sake of brevity, we won’t delve into the details of what’s happening with this command.

Here’s a quick synopsis:
• launches a peer node, ordering node, Certificate Authority and CLI container
• creates a channel and joins the peer to the channel
• installs smart contract (i.e. chaincode) onto the peer’s file system and instantiates said chaincode

on the channel; instantiate starts a chaincode container
• calls the initLedger function to populate the channel ledger with 10 unique cars

Note
5 These operations will typically be done by an organizational or peer admin. The script uses the CLI to

execute these commands, however there is support in the SDK as well. Refer to the Hyperledger
Fabric Node SDK repo for example scripts.

6 Issue a “docker ps“ command to reveal the processes started by the startFabric.sh script. You
can learn more about the details and mechanics of these operations in the Building Your First
Network section. Here we’ll just focus on the application. The following picture provides a simplistic
representation of how the application interacts with the Hyperledger Fabric network.

IBM Blockchain

Hyperledger Fabric Labs Page 38

1.3. How Applications Interact with the Network

Applications use APIs to invoke smart contracts (referred to as “chaincode”). These smart contracts are
hosted in the network and identified by name and version. For example, our chaincode container is titled
- dev-peer0.org1.example.com-fabcar-1.0 - where the name is fabcar, the version is 1.0 and the
peer it is running against is dev-peer0.org1.example.com.

APIs are accessible with a software development kit (SDK). For purposes of this exercise, we’ll be using
the Hyperledger Fabric Node SDK though there is also a Java SDK and CLI that can be used to develop
applications.

Querying the Ledger

Queries are how you read data from the ledger. You can query for the value of a single key, multiple
keys, or – if the ledger is written in a rich data storage format like JSON – perform complex searches
against it (looking for all assets that contain certain keywords, for example).

As we said earlier, our sample network has an active chaincode container and a ledger that has been
primed with 10 different cars. We also have some sample Javascript code - query.js - in the fabcar
directory that can be used to query the ledger for details on the cars.

Before we take a look at how that app works, we need to install the SDK node modules in order for our
program to function. From your fabcar directory, issue the following:

npm install
Note
You will issue all subsequent commands from the fabcar directory.

1 The following two commands involve communication with the Certificate Authority. You may find it

useful to view a log of activity with the Certificate Authority. Open a new terminal window and enter
the following command.

docker logs -f ca.example.com

2 When we launched our network, an admin user – admin – was registered with our Certificate
Authority. Now we need to send an enrollment call to the CA server and retrieve the enrollment
certificate (eCert) for this user. We won’t delve into enrollment details here, but suffice it to say that
the SDK and by extension our applications need this cert in order to form a user object for the admin.
We will then use this admin object to subsequently register and enroll a new user. Send the admin

IBM Blockchain

Hyperledger Fabric Labs Page 39

enroll call to the CA server.

node enrollAdmin.js

This program will invoke a certificate signing request (CSR) and ultimately output an eCert and key
material into a newly created folder – hfc-key-store – at the root of this project. Our apps will then
look to this location when they need to create or load the identity objects for our various users.

3 With our newly generated admin eCert, we will now communicate with the CA server once more to

register and enroll a new user. This user – user1 – will be the identity we use when querying and
updating the ledger. It’s important to note here that it is the admin identity that is issuing the
registration and enrollment calls for our new user (i.e. this user is acting in the role of a registrar).
Send the register and enroll calls for user1:

node registerUser.js

Similar to the admin enrollment, this program invokes a CSR and outputs the keys and eCert into the
hfc-key-store subdirectory. So now we have identity material for two separate users – admin & user1.
Time to interact with the ledger…

4 Now we can run our javascript programs. First, let’s run our query.js program to return a listing of

all the cars on the ledger. A function that will query all the cars, queryAllCars, is pre-loaded in the
app, so we can simply run the program as is:

node query.js

5 It should return something like this:

Query result count = 1
Response is [{"Key":"CAR0",
"Record":{"colour":"blue","make":"Toyota","model":"Prius","owner":"Tomoko"}},
{"Key":"CAR1", "Record":{"colour":"red","make":"Ford","model":"Mustang","owner":"Brad"}},
{"Key":"CAR2", "Record":{"colour":"green","make":"Hyundai","model":"Tucson","owner":"Jin Soo"}},
{"Key":"CAR3", "Record":{"colour":"yellow","make":"Volkswagen","model":"Passat","owner":"Max"}},
{"Key":"CAR4", "Record":{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}},
{"Key":"CAR5", "Record":{"colour":"purple","make":"Peugeot","model":"205","owner":"Michel"}},
{"Key":"CAR6", "Record":{"colour":"white","make":"Chery","model":"S22L","owner":"Aarav"}},
{"Key":"CAR7", "Record":{"colour":"violet","make":"Fiat","model":"Punto","owner":"Pari"}},
{"Key":"CAR8", "Record":{"colour":"indigo","make":"Tata","model":"Nano","owner":"Valeria"}},
{"Key":"CAR9", "Record":{"colour":"brown","make":"Holden","model":"Barina","owner":"Shotaro"}}]

These are the 10 cars. A black Tesla Model S owned by Adriana, a red Ford Mustang owned by
Brad, a violet Fiat Punto owned by someone named Pari, and so on. The ledger is key/value based
and in our implementation the key is CAR0 through CAR9. This will become particularly important in a
moment.

6 Now let’s see what it looks like under the hood (if you’ll forgive the pun). Use VSCode to open the

query.js program with “code query.js”.

7 The initial section of the application defines certain variables such as channel name and network

endpoints:

// setup the fabric network

IBM Blockchain

Hyperledger Fabric Labs Page 40

var channel = fabric_client.newChannel('mychannel');
var peer = fabric_client.newPeer('grpc://localhost:7051');
channel.addPeer(peer);

8 This is the chunk where we construct our query:

const request = {
//targets : --- letting this default to the peers assigned to the
channel

 chaincodeId: 'fabcar',
 fcn: 'queryAllCars',
 args: ['']

We define the chaincodeId variable as fabcar – allowing us to target this specific chaincode – and
then call the queryAllCars function defined within that chaincode.
When we issued the node query.js command earlier, this specific function was called to query the
ledger. However, this isn’t the only function that we can pass.

9 To take a look at the others, open fabcar.js in VSCode with “code

../chaincode/fabcar/node/fabcar.js”. You’ll see that we have the following functions
available to call - initLedger, queryCar, queryAllCars, createCar and changeCarOwner.
Let’s take a closer look at the queryAllCars function to see how it interacts with the ledger.

async queryAllCars(stub, args) {

 let startKey = 'CAR0';
 let endKey = 'CAR999';

 let iterator = await stub.getStateByRange(startKey, endKey);

 let allResults = [];
 while (true) {
 let res = await iterator.next();

 if (res.value && res.value.value.toString()) {
 let jsonRes = {};
 console.log(res.value.value.toString('utf8'));

 jsonRes.Key = res.value.key;
 try {
 jsonRes.Record =
JSON.parse(res.value.value.toString('utf8'));
 } catch (err) {
 console.log(err);
 jsonRes.Record = res.value.value.toString('utf8');
 }
 allResults.push(jsonRes);
 }
 if (res.done) {
 console.log('end of data');
 await iterator.close();

IBM Blockchain

Hyperledger Fabric Labs Page 41

 console.info(allResults);
 return Buffer.from(JSON.stringify(allResults));
 }
 }
 }

The function uses the shim interface function getStateByRange to return ledger data between the
args of startKey and endKey. Those keys are defined as CAR0 and CAR999 respectively. Therefore,
we could theoretically create 1,000 cars (assuming the keys are tagged properly) and a
queryAllCars would reveal every one.

Below is a representation of how an app would call different functions in chaincode.

10 We can see our queryAllCars function up there, as well as one called createCar that will allow us
to update the ledger and ultimately append a new block to the chain. But first, let’s do another query.

11 Go back to the query.js program and edit the request to query a specific car. We’ll do this by
changing the function from queryAllCars to queryCar and passing a specific “Key” to the args
parameter. Let’s use CAR4 here. So our edited query.js program should now contain the following:

const request = {
 chaincodeId: 'fabcar',
 fcn: 'queryCar',
 args: ['CAR4']

12 Save the program and navigate back to your fabcar directory. Now run the program again:

node query.js

13 You should see the following:

{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}

So we’ve gone from querying all cars to querying just one, Adriana’s black Tesla Model S. Using the
queryCar function, we can query against any key (e.g. CAR0) and get whatever make, model, color, and
owner correspond to that car.

Great. Now you should be comfortable with the basic query functions in the chaincode, and the handful
of parameters in the query program. Time to update the ledger...

IBM Blockchain

Hyperledger Fabric Labs Page 42

1.4. Updating the Ledger

Now that we’ve done a few ledger queries and changes a bit of code, we’re ready to update the ledger.
There are a lot of potential updates we could make, but let’s just create a new car for starters.

Ledger updates start with an application generating a transaction proposal. Just like query, a request is
constructed to identify the channel ID, function, and specific smart contract to target for the transaction.
The program then calls the channel.sendTransactionProposal API to send the transaction proposal
to the peer(s) for endorsement.

The network (i.e. endorsing peer) returns a proposal response, which the application uses to build and
sign a transaction request. This request is sent to the ordering service by calling the
channel.sendTransaction API. The ordering service will bundle the transaction into a block and then
“deliver” the block to all peers on a channel for validation. (In our case we have only the single endorsing
peer.)

Finally the application uses the channel.newChannelEventHub API to connect to the peer’s event
listener port, and calls event_hub.registerTxEvent to register events associated with a specific
transaction ID. This API allows the application to know the fate of a transaction (i.e. successfully
committed or unsuccessful). Think of it as a notification mechanism.
Note
We don’t go into depth here on a transaction’s lifecycle. Consult the Transaction Flow documentation for
lower level details on how a transaction is ultimately committed to the ledger.

1 The goal with our initial invoke is to simply create a new asset (car in this case). We have a separate

javascript program - invoke.js - that we will use for these transactions. Just like query.js, use
VSCode to open the file and navigate to the code block where we construct our invocation:

var request = {
 //targets: let default to the peer assigned to the client
 chaincodeId: 'fabcar',
 fcn: '',
 args: [''],
 chainId: 'mychannel',
 txId: tx_id
 };

2 You’ll see that we can call one of two functions - createCar or changeCarOwner. Let’s create a red

Chevy Volt and give it to an owner named Nick. We’re up to CAR9 on our ledger, so we’ll use CAR10
as the identifying key here. The updated code block should look like this:

var request = {
 // targets: targets,
 chaincodeId: 'fabcar',
 fcn: 'createCar',
 args: ['CAR10', 'Chevy', 'Volt', 'Red', 'Nick'],
 chainId: 'mychannel',
 txId: tx_id

IBM Blockchain

Hyperledger Fabric Labs Page 43

3 Save it and run the program:

node invoke.js

4 There will be some output in the terminal about Proposal Response and Transaction ID. However, all

we’re concerned with is this message:

The transaction has been committed on peer localhost:7051

5 The peer emits this event notification, and our application receives it thanks to our

event_hub.registerTxEvent API. So now if we go back and edit our query.js program and call
the queryCar function against an arg of CAR10, we should see the following:

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Nick"}

6 Finally, let’s call our last function - changeCarOwner. Nick is feeling generous and he wants to give

his Chevy Volt to a man named Barry. So, we simply edit invoke.js to reflect the following:

var request = {
 //targets: let default to the peer assigned to the client
 chaincodeId: 'fabcar'
 fcn: 'changeCarOwner',
 args: ['CAR10', 'Barry'],
 chainId: 'myChannel',
 txId: tx_id

7 Execute the program again - node invoke.js - and then run the query app one final time. We are
still querying against CAR10, so we should see:

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Barry"}

1.5. Lab Cleanup

1 Start a terminal
2 cd ~/fabric-samples/first-network
3 Issue the following command to shutdown any existing blockchain networks. Answer ‘Y’ to the

Continue prompt.

./byfn.sh down

4 Issue the following command to kill any active or stale containers:

 docker rm -f $(docker ps -aq)

5 Issue the following command to clear any cached networks. Answer ‘Y’ to the Continue prompt.

 docker network prune

IBM Blockchain

Hyperledger Fabric Labs Page 44

Appendix A. Appendix A. Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be

IBM Blockchain

Hyperledger Fabric Labs Page 45

the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Blockchain

Hyperledger Fabric Labs Page 46

Appendix B. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube
Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp.
and Quantum in the U.S. and other countries.

IBM Blockchain

Hyperledger Fabric Labs Page 47

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks of

IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Hyperledger Fabric Labs Page 48

IBM Blockchain Hands-On
Hyperledger Fabric SDK Development:
Modify Chaincode

Lab Three

IBM Blockchain

Hyperledger Fabric Labs Page 49

Contents
OVERVIEW 50
MODIFY CHAINCODE .. 51

1.1. PERFORM PREREQUISITE LAB CLEANUP ... 51
1.2. MODIFY THE SMART CONTRACT TO ADD A CAR HISTORY METHOD .. 52
1.3. START THE TEST NETWORK .. 53
1.4. HOW APPLICATIONS INTERACT WITH THE NETWORK .. 54
1.5. UPDATING THE LEDGER .. 57
1.6. LAB CLEANUP ... 59

APPENDIX A. NOTICES ... 61
APPENDIX B. TRADEMARKS AND COPYRIGHTS .. 63

IBM Blockchain

Hyperledger Fabric Labs Page 50

Overview
The purpose of this lab is to enable you to modify existing smart contract code invoked by a blockchain
application that uses the Hyperledger Fabric SDK.

IBM Blockchain

Hyperledger Fabric Labs Page 51

Modify Chaincode
At the most basic level, applications on a blockchain network are what enable users to query a ledger
(asking for specific records it contains), or to update it (adding records to it). Chaincode is the business
logic that is invoked by the application. Chaincode is the codification of the smart contract.

Our application, composed in JavaScript, leverages the Node.js SDK to interact with the network (where
our ledger exists). The chaincode also is composed in Node.js. This tutorial will guide you through the
steps involved in modifying the chaincode to add a new method and then using the application to invoke
the new chaincode method.

1. Perform prerequisite lab cleanup. Cleanup docker containers and existing networks from the
previous lab.

2. Modify the sample smart contract our app will use. Our smart contracts contain various functions
that allow us to interact with the ledger in different ways. For example, we can read data holistically or on
a more granular level. We will modify the smart contract to add a method to query the transaction history
of an asset.

3. Starting a test Hyperledger Fabric blockchain network. We need some basic components in our
network in order to query and update the ledger. These components – a peer node, ordering node and
Certificate Authority – serve as the backbone of our network; we’ll also have a CLI container used for a
few administrative commands. A single script will launch this test network.

4. Using the application to be able to query and update records. We provide two sample applications
– one for querying the ledger and another for updating it. Our apps will use the SDK APIs to interact with
the network and ultimately call these functions. We will modify the query application to invoke the method
to query the transaction history of a car.

After completing this tutorial, you should have a basic understanding of how an application, using the
Hyperledger Fabric SDK for Node.js is programmed in conjunction with how to modify a smart contract to
interact with the ledger on a Hyperledger Fabric network.

1.1. Perform prerequisite lab cleanup

1 Start a terminal
2 cd ~/fabric-samples/first-network
3 Issue the following command to shutdown any existing blockchain networks. Answer ‘Y’ to the

Continue prompt.

./byfn.sh down

4 Issue the following command to kill any active or stale containers:

 docker rm -f $(docker ps -aq)

5 Issue the following command to clear any cached networks. Answer ‘Y’ to the Continue prompt.

 docker network prune

6 Delete the underlying chaincode image for the fabcar smart contract.

IBM Blockchain

Hyperledger Fabric Labs Page 52

 docker rmi dev-peer0.org1.example.com-fabcar-1.0-5c906e402ed29f20260ae42283216aa75549c571e2e380f3615826365d8269ba

1.2. Modify the smart contract to add a car history method

Modify the fabcar.js Node.js code in the following steps to add a method to obtain the history of a
car. The chaincode API GetHistoryForKey() will return history of values for a key. Subsequent steps
in this lab will create a new CAR asset and then modify the asset so we have some historical activity
for the asset.

1 Invoke the VS Code editor for the fabcar.js chaincode.

code ../chaincode/fabcar/node/fabcar.js

2 Add the following getCarHistory method code snippet after the queryAllCars method. Be sure to
save your changes in the editor.

 async getCarHistory(stub, args) {
 console.info('============= START : getCarHistory ===========');
 if (args.length != 1) {
 throw new Error('Incorrect number of arguments. Expecting 1');
 }

 let iterator = await stub.getHistoryForKey(args[0]);

 let allResults = [];
 while (true) {
 let res = await iterator.next();

 if (res.value && res.value.value.toString()) {
 let jsonRes = {};
 console.log(res.value.value.toString('utf8'));

 jsonRes.Key = res.value.key;
 try {
 jsonRes.Record = JSON.parse(res.value.value.toString('utf8'));
 } catch (err) {
 console.log(err);
 jsonRes.Record = res.value.value.toString('utf8');
 }
 allResults.push(jsonRes);
 }
 if (res.done) {
 console.log('end of data');
 await iterator.close();
 console.info(allResults);
 return Buffer.from(JSON.stringify(allResults));
 }

IBM Blockchain

Hyperledger Fabric Labs Page 53

 }

 }

The function uses the shim interface function getHistoryForKey to return ledger asset history data
for the argument passed to the getCarHistory function. getHistoryForKey returns a history of key
values across time. The History db is enabled in core.yaml file (fabric-samples/config/core.yaml. You
can find it enabled in part of the ledger section

 history:
 # enableHistoryDatabase - options are true or false
 # Indicates if the history of key updates should be stored.
 # All history 'index' will be stored in goleveldb, regardless if using
 # CouchDB or alternate database for the state.
 enableHistoryDatabase: true

1.3. Start the Test Network

1 Start a terminal
2 cd ~/fabric-samples/fabcar/
3 Issue the following command which can take a minute or so to complete. The ‘node’ parameter will

start the Node.js chaincode container vs. the Go chaincode container.

./startFabric.sh node

4 Issue the following command to download any required Node.js packages.

npm install

5 For the sake of brevity, we won’t delve into the details of what’s happening with this command.

Here’s a quick synopsis:
• launches a peer node, ordering node, Certificate Authority and CLI container
• creates a channel and joins the peer to the channel
• installs smart contract (i.e. chaincode) onto the peer’s file system and instantiates said chaincode

on the channel; instantiate starts a chaincode container
• calls the initLedger function to populate the channel ledger with 10 unique cars

Note
6 These operations will typically be done by an organizational or peer admin. The script uses the CLI to

execute these commands, however there is support in the SDK as well. Refer to the Hyperledger
Fabric Node SDK repo for example scripts.

7 Issue a “docker ps“ command to reveal the processes started by the startFabric.sh script. You
can learn more about the details and mechanics of these operations in the Building Your First
Network section. Here we’ll just focus on the application. The following picture provides a simplistic
representation of how the application interacts with the Hyperledger Fabric network.

IBM Blockchain

Hyperledger Fabric Labs Page 54

1.4. How Applications Interact with the Network

Applications use APIs to invoke smart contracts (referred to as “chaincode”). These smart contracts are
hosted in the network and identified by name and version. For example, our chaincode container is titled
- dev-peer0.org1.example.com-fabcar-1.0 - where the name is fabcar, the version is 1.0 and the
peer it is running against is dev-peer0.org1.example.com.

APIs are accessible with a software development kit (SDK). For purposes of this exercise, we’ll be using
the Hyperledger Fabric Node SDK though there is also a Java SDK and CLI that can be used to develop
applications.

Querying the Ledger

Queries are how you read data from the ledger. You can query for the value of a single key, multiple
keys, or – if the ledger is written in a rich data storage format like JSON – perform complex searches
against it (looking for all assets that contain certain keywords, for example).

As we said earlier, our sample network has an active chaincode container and a ledger that has been
primed with 10 different cars. We also have some sample JavaScript code - query.js - in the fabcar
directory that can be used to query the ledger for details on the cars.

1 When we launched our network, an admin user – admin – was registered with our Certificate

Authority. Now we need to send an enrollment call to the CA server and retrieve the enrollment
certificate (eCert) for this user. We won’t delve into enrollment details here, but suffice it to say that
the SDK and by extension our applications need this cert in order to form a user object for the admin.
We will then use this admin object to subsequently register and enroll a new user. Send the admin

IBM Blockchain

Hyperledger Fabric Labs Page 55

enroll call to the CA server.

node enrollAdmin.js

This program will invoke a certificate signing request (CSR) and ultimately output an eCert and key
material into a newly created folder – hfc-key-store – at the root of this project. Our apps will then
look to this location when they need to create or load the identity objects for our various users.

2 With our newly generated admin eCert, we will now communicate with the CA server once more to

register and enroll a new user. This user – user1 – will be the identity we use when querying and
updating the ledger. It’s important to note here that it is the admin identity that is issuing the
registration and enrollment calls for our new user (i.e. this user is acting in the role of a registrar).
Send the register and enroll calls for user1:

node registerUser.js

Similar to the admin enrollment, this program invokes a CSR and outputs the keys and eCert into the
hfc-key-store subdirectory. So now we have identity material for two separate users – admin & user1.
Time to interact with the ledger…

3 Use VSCode to open the query.js program with “code query.js” and edit the request in query.js
by entering node query.js to look as the follows in order to query all cars. This request was changed
in the previous lab. Be sure to save the file.

const request = {
//targets : --- letting this default to the peers assigned to the
channel

 chaincodeId: 'fabcar',
 fcn: 'queryAllCars',
 args: ['']

4 Now we can run our javascript programs. First, let’s run our query.js program to return a listing of

all the cars on the ledger. A function that will query all the cars, queryAllCars, is pre-loaded in the
app, so we can simply run the program as is:

node query.js

5 It should return something like this:

Query result count = 1
Response is [{"Key":"CAR0",
"Record":{"colour":"blue","make":"Toyota","model":"Prius","owner":"Tomoko"}},
{"Key":"CAR1", "Record":{"colour":"red","make":"Ford","model":"Mustang","owner":"Brad"}},
{"Key":"CAR2", "Record":{"colour":"green","make":"Hyundai","model":"Tucson","owner":"Jin Soo"}},
{"Key":"CAR3", "Record":{"colour":"yellow","make":"Volkswagen","model":"Passat","owner":"Max"}},
{"Key":"CAR4", "Record":{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}},
{"Key":"CAR5", "Record":{"colour":"purple","make":"Peugeot","model":"205","owner":"Michel"}},
{"Key":"CAR6", "Record":{"colour":"white","make":"Chery","model":"S22L","owner":"Aarav"}},
{"Key":"CAR7", "Record":{"colour":"violet","make":"Fiat","model":"Punto","owner":"Pari"}},
{"Key":"CAR8", "Record":{"colour":"indigo","make":"Tata","model":"Nano","owner":"Valeria"}},
{"Key":"CAR9", "Record":{"colour":"brown","make":"Holden","model":"Barina","owner":"Shotaro"}}]

These are the 10 cars. A black Tesla Model S owned by Adriana, a red Ford Mustang owned by
Brad, a violet Fiat Punto owned by someone named Pari, and so on. The ledger is key/value based

IBM Blockchain

Hyperledger Fabric Labs Page 56

and in our implementation the key is CAR0 through CAR9. This will become particularly important in a
moment.

6 To take a look at the other chaincode functions, open fabcar.js in VSCode with “code

../chaincode/fabcar/node/fabcar.js”. You’ll see that we have the following functions available
to call - initLedger, queryCar, queryAllCars, createCar, changeCarOwner, and getCarHistory.
Let’s take a closer look at the queryAllCars function to see how it interacts with the ledger.

async queryAllCars(stub, args) {

 let startKey = 'CAR0';
 let endKey = 'CAR999';

 let iterator = await stub.getStateByRange(startKey, endKey);

 let allResults = [];
 while (true) {
 let res = await iterator.next();

 if (res.value && res.value.value.toString()) {
 let jsonRes = {};
 console.log(res.value.value.toString('utf8'));

 jsonRes.Key = res.value.key;
 try {
 jsonRes.Record =
JSON.parse(res.value.value.toString('utf8'));
 } catch (err) {
 console.log(err);
 jsonRes.Record = res.value.value.toString('utf8');
 }
 allResults.push(jsonRes);
 }
 if (res.done) {
 console.log('end of data');
 await iterator.close();
 console.info(allResults);
 return Buffer.from(JSON.stringify(allResults));
 }
 }
 }

The function uses the shim interface function getStateByRange to return ledger data between the
args of startKey and endKey. Those keys are defined as CAR0 and CAR999 respectively. Therefore,
we could theoretically create 1,000 cars (assuming the keys are tagged properly) and a
queryAllCars would reveal every one.

Below is a representation of how an app would call different functions in chaincode.

IBM Blockchain

Hyperledger Fabric Labs Page 57

7 We can see our queryAllCars function up there, as well as one called createCar that will allow us
to update the ledger and ultimately append a new block to the chain. But first, let’s do another query.

8 Go back to the query.js program and edit the request to query a specific car. We’ll do this by
changing the function from queryAllCars to queryCar and passing a specific “Key” to the args
parameter. Let’s use CAR4 here. So our edited query.js program should now contain the following:

const request = {
 chaincodeId: 'fabcar',
 fcn: 'queryCar',
 args: ['CAR4']

9 Save the program and navigate back to your fabcar directory. Now run the program again:

node query.js

10 You should see the following:

{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}

So we’ve gone from querying all cars to querying just one, Adriana’s black Tesla Model S. Using the
queryCar function, we can query against any key (e.g. CAR0) and get whatever make, model, color, and
owner correspond to that car.

Great. Now you should be comfortable with the basic query functions in the chaincode, and the handful
of parameters in the query program. Time to update the ledger...

1.5. Updating the Ledger

Now that we’ve done a few ledger queries and changes a bit of code, we’re ready to update the ledger.
There are a lot of potential updates we could make, but let’s just create a new car for starters.

Ledger updates start with an application generating a transaction proposal. Just like query, a request is
constructed to identify the channel ID, function, and specific smart contract to target for the transaction.
The program then calls the channel.sendTransactionProposal API to send the transaction proposal
to the peer(s) for endorsement.

IBM Blockchain

Hyperledger Fabric Labs Page 58

The network (i.e. endorsing peer) returns a proposal response, which the application uses to build and
sign a transaction request. This request is sent to the ordering service by calling the
channel.sendTransaction API. The ordering service will bundle the transaction into a block and then
“deliver” the block to all peers on a channel for validation. (In our case we have only the single endorsing
peer.)

Finally the application uses the channel.newChannelEventHub API to connect to the peer’s event
listener port, and calls event_hub.registerTxEvent to register events associated with a specific
transaction ID. This API allows the application to know the fate of a transaction (i.e. successfully
committed or unsuccessful). Think of it as a notification mechanism.
Note
We don’t go into depth here on a transaction’s lifecycle. Consult the Transaction Flow documentation for
lower level details on how a transaction is ultimately committed to the ledger.

1 The goal with our initial invoke is to simply create a new asset (car in this case). We have a separate

javascript program - invoke.js - that we will use for these transactions. Just like query.js, use
VSCode to open the file and navigate to the code block where we construct our invocation:

var request = {
 //targets: let default to the peer assigned to the client
 chaincodeId: 'fabcar',
 fcn: '',
 args: [''],
 chainId: 'mychannel',
 txId: tx_id
 };

2 You’ll see that we can call one of two functions - createCar or changeCarOwner. Let’s create a red

Chevy Volt and give it to an owner named Nick. We’re up to CAR9 on our ledger, so we’ll use CAR10
as the identifying key here. The updated code block should look like this:

var request = {
 chaincodeId: 'fabcar',
 fcn: 'createCar',
 args: ['CAR10', 'Chevy', 'Volt', 'Red', 'Nick'],
 chainId: 'mychannel',
 txId: tx_id

3 Save it and run the program:

node invoke.js

4 There will be some output in the terminal about Proposal Response and Transaction ID. However, all

we’re concerned with is this message:

The transaction has been committed on peer localhost:7051

5 The peer emits this event notification, and our application receives it thanks to our

event_hub.registerTxEvent API. So now if we go back and edit our query.js program and call
the queryCar function against an arg of CAR10, we should see the following:

IBM Blockchain

Hyperledger Fabric Labs Page 59

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Nick"}

6 Finally, let’s change ownership of the car to establish a history for the vehicle - changeCarOwner.

Nick is feeling generous and he wants to give his Chevy Volt to a man named Barry. So, we simply
edit invoke.js to reflect the following:

var request = {
 //targets: let default to the peer assigned to the client
 chaincodeId: 'fabcar'
 fcn: 'changeCarOwner',
 args: ['CAR10', 'Barry'],
 chainId: 'myChannel',
 txId: tx_id

7 Execute the program again - node invoke.js - and then run the query app one final time. We are
still querying against CAR10, so we should see:

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Barry"}

8 Finally, go back to the query.js program and edit the request to query the history for a specific car.
We’ll do this by changing the function from queryCar to getCarHistory and passing a specific “Key” to
the args parameter. Let’s use CAR10 here. So our edited query.js program should now contain the
following:

const request = {
 chaincodeId: 'fabcar',
 fcn: 'getCarHistory',
 args: ['CAR10']

Run node query.js to rerun the query once again. This time the results will show the complete history
for the CAR10 asset. The history includes an initial record for the asset creation and an additional
record for when we modified CAR10 to have an owner of Barry.

Response is
[{"Record":{"docType":"car","make":"Chevy","model":"Volt","color":"Red","owner":"Nick
"}},{"Record":{"color":"Red","docType":"car","make":"Chevy","model":"Volt","owner":"B
arry"}}]

1.6. Lab Cleanup

1 Start a terminal and change to the first-network project.

cd ~/fabric-samples/first-network

2 Issue the following command to shutdown any existing blockchain networks. Answer ‘Y’ to the

IBM Blockchain

Hyperledger Fabric Labs Page 60

Continue prompt.

./byfn.sh down

3 Issue the following command to kill any active or stale containers:

 docker rm -f $(docker ps -aq)

4 Issue the following command to clear any cached networks. Answer ‘Y’ to the Continue prompt.

 docker network prune

5 Close VSCode by choosing File->Exit from the VSCode menu bar.

IBM Blockchain

Hyperledger Fabric Labs Page 61

Appendix A. Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be

IBM Blockchain

Hyperledger Fabric Labs Page 62

the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Blockchain

Hyperledger Fabric Labs Page 63

Appendix B. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp.
and Quantum in the U.S. and other countries.

IBM Blockchain

Hyperledger Fabric Labs Page 64

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks of

IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Hyperledger Fabric Labs Page 65

IBM Blockchain Hands-On
VSCode Extension for IBM Blockchain Platform:
Generate, Deploy, Instantiate, and Test Smart Contracts
Lab Four

IBM Blockchain

Hyperledger Fabric Labs Page 66

Contents
OVERVIEW 67
IBM BLOCKCHAIN PLATFORM EXTENSION OVERVIEW .. 68

1.1. UPGRADE THE IBM BLOCKCHAIN PLATFORM EXTENSION ... 69
1.2. START A LOCAL HYPERLEDGER FABRIC INSTANCE .. 70
1.3. GENERATE A TEMPLATE A SMART CONTRACT .. 73
1.4. PACKAGE, DEPLOY, AND INSTANTIATE THE SMART CONTRACT ... 78
1.5. UNIT TEST THE SMART CONTRACT WITHOUT BLOCKCHAIN ... 84
1.6. TEST SMART CONTRACT USING EMBEDDED HYPERLEDGER FABRIC RUNTIME 87
1.7. GENERATE A TEST CLIENT FOR THE SMART CONTRACT .. 89
1.8. DEBUG THE SMART CONTRACT (OPTIONAL) .. 92
1.9. LAB CLEANUP ... 98

APPENDIX A. APPENDIX A. NOTICES .. 101
APPENDIX B. TRADEMARKS AND COPYRIGHTS .. 103

IBM Blockchain

Hyperledger Fabric Labs Page 67

Overview
The purpose of this lab is to enable you to become familiar with the new Visual Studio Code (VSCode)
IBM Blockchain Platform extension to generate template smart contracts, deploy to a local Hyperledger
Fabric instance, and test the smart contract using a generated test Node.js test module.

IBM Blockchain

Hyperledger Fabric Labs Page 68

IBM Blockchain Platform Extension Overview
The IBM Blockchain Platform extension has been created to assist users in developing, testing, and
deploying smart contracts; including connecting to Hyperledger Fabric environments. The IBM
Blockchain Platform extension provides an explorer and the following commands in the table below
accessible from the Command Palette, for developing smart contracts quickly:

Command Description
Add Connection Add a Hyperledger Fabric instance connection
Add Identity To Connection Add an identity to be used when connecting to a Hyperledger Fabric instance
Connect To Blockchain Connect to a Hyperledger Fabric blockchain using a blockchain connection
Create Smart Contract Project Create a new JavaScript or TypeScript smart contract project
Debug Debug a Smart Contract
Delete Connection Delete a Hyperledger Fabric instance connection
Delete Package Delete a smart contract package
Disconnect From Blockchain Disconnect from the blockchain you're currently connected to
Edit Connection Edit connection to a blockchain
Export Package Export an already-packaged smart contract package to use outside VSCode
Generate Smart Contract
Tests Create a functional level test file for instantiated smart contracts

Install Smart Contract Install a smart contract package onto a peer

Instantiate Smart Contract
Instantiate an installed smart contract package onto a channel
*Note: This currently doesn't work with IBM Blockchain Platform Enterprise plan
- Coming soon!

Open Fabric Runtime
Terminal Open a terminal with access to the Fabric runtime (peer CLI)

Package a Smart Contract
Project Create a new smart contract package from a project in the Explorer

Refresh Blockchain
Connections Refresh the Blockchain Connections view

Refresh Smart Contract
Packages Refresh the Smart Contract Packages view

Restart Fabric Runtime Restart a Hyperledger Fabric instance
Start Fabric Runtime Start a Hyperledger Fabric instance
Submit Transaction Submit a transaction to a smart contract
Teardown Fabric Runtime Teardown the local_fabric runtime (hard reset)
Toggle Development Mode Toggle the Hyperledger Fabric instance development mode
Upgrade Smart Contract Upgrade an instantiated smart contract

This tutorial is an introduction to the new IBM Blockchain Platform extension which is currently under
development. The tutorial will guide you through the steps to steps involved in generating a smart
contract, installing and instantiating the smart contract, and then unit testing the smart contract. This lab
was tested with the .6 version or higher of the extension. Please note: this extension is available for early

IBM Blockchain

Hyperledger Fabric Labs Page 69

experimentation. There are many features and improvements to come before the v1.0 release. Please
bear this in mind, and if you find something you'd like to see added, let the team know by raising a
GitHub issue at
https://github.com/IBM-Blockchain/blockchain-vscode-extension/issues

The major steps you will follow for this lab are:

1. Upgrade the IBM Blockchain Platform extension. We will upgrade the existing IBM Blockchain
Platform extension to the current version.

2. Starting a local Hyperledger Fabric blockchain instance. The extension enables to connect to an
external Hyperledger Fabric instance or an embedded local Hyperledger Fabric instance. We will
connect to the local Hyperledger Fabric instance.

3. Use the extension to generate a template smart contract. We will generate a sample smart
contract template.

4. Package, deploy, and instantiate the smart contract. We will package, deploy, and instantiate the
smart contract using the extension.

5. Unit test the smart contract without blockchain. We will unit test the smart contract using a
generated test module.

6. Test smart contract with the embedded Hyperledger Fabric runtime. We will test the smart
contract using the embedded Hyperledger Fabric runtime.

7. Generate a test client for the smart contract. We will generate a test client that can be used for
regression testing the smart contract or as the basis for your own application client.

8. Debug the smart contract (Optional). We will debug a smart contract setting a breakpoint.

9. Lab Cleanup. Disconnect from the embedded Hyperledger Fabric runtime and tear down the
environment.

After completing this tutorial, you should have a basic understanding on how to use the IBM Blockchain
Platform VSCode extension.

1.1. Upgrade the IBM Blockchain Platform extension

In this section you will upgrade the IBM Blockchain Platform extension to the latest version.

1 Invoke the VS Code editor from the user home directory

cd ~
code

2 Close any tabs that may be open from the previous lab(s).

IBM Blockchain

Hyperledger Fabric Labs Page 70

3 Click on the extensions icon as shown below and then click on the Update to 0.0.7 link.

4 Reload Visual Studio Code by clicking on the Reload link.

1.2. Start a local Hyperledger Fabric instance

In this section you will start and connect to a local Hyperledger Fabric instance that is automatically
configured by the IBM Blockchain Platform extension.

1 Click on the icon as shown below to open the IBM Blockchain Platform view.

IBM Blockchain

Hyperledger Fabric Labs Page 71

2 You should see the extension activating/activated messages below in the Output pane. Click on the

local_fabric instance under Blockchain Connections pane to start and connect to a local
Hyperledger Fabric instance.

IBM Blockchain

Hyperledger Fabric Labs Page 72

3 The local_fabric instance under Blockchain Connections pane should indicate you are connected

with a filled in circle to the right of the instance and the output window should indicate the local
Hyperledger Fabric instance has been successfully started as indicated by the INFO 002
Successfully submitted proposal to join channel message. Click on the local_fabric instance to
expand it.

4 The local_fabric instance is expanded to display the configured channels and peers. In this case
one channel and peer is configured.

IBM Blockchain

Hyperledger Fabric Labs Page 73

1.3. Generate a template a smart contract

In this section, we will generate a sample template smart contract.

7 Click on the gear icon and then Command Palette to bring up a list of commands.

IBM Blockchain

Hyperledger Fabric Labs Page 74

8 Enter IBM Blockchain in the command palette dialog to filter the search and then click on IBM
Blockchain Platform: Create Smart Contract Project.

IBM Blockchain

Hyperledger Fabric Labs Page 75

9 Click on yes to the Can this extension install missing npm packages before proceeding? dialog.

10 In lower right, you will see a message that the extension is installing smart contract generator
dependencies.

11 Click on JavaScript to the Chose smart contract language (Esc to cancel) dialog.

12 A file dialog will appear.

IBM Blockchain

Hyperledger Fabric Labs Page 76

13 On the file dialog, create a new folder by clicking on the new folder icon.

14 In the Folder Name dialog, enter MyContract and click the Create button.

IBM Blockchain

Hyperledger Fabric Labs Page 77

15 Click the Open button.

16 Click on Add to workspace on the Choose how to open your new project dialog.

17 On the lower right within VSCode, you will see the Generating smart contract project message.

The message will disappear once the smart contract project has been generated.

IBM Blockchain

Hyperledger Fabric Labs Page 78

18 Click on the Explorer icon to bring up the Explorer navigation tree. Expand MyContract->lib and

select my-contract.js to view the generated smart contract.

Notice how MyContract extends the Hyperledger Fabric Contract class. This built-in class was
brought into scope earlier in the program:

const {Contract} = require('fabric-contract-api');

Our MyContract contract will acquire useful capabilities from the Fabric Contract class, such as
automatic method invocation, a per-transaction context, transaction handlers, and class-shared
state.

You might have noticed an extra variable in the instantiate, transaction1, and transaction2
definitions – ctx. It’s called the transaction context, and it’s always the first variable. It contains a
per-transaction data area to make it easier for transaction logic to create and recall relevant smart
contract information. For example, in this case it would contain a participant’s specified transaction
identifier and digital identity, as well as access to the ledger API, and a temporary storage area.

1.4. Package, deploy, and instantiate the smart contract

In this section, we will package, deploy, and instantiate the smart contract.

IBM Blockchain

Hyperledger Fabric Labs Page 79

14 Click on the icon as shown below to switch back to the IBM Blockchain Platform view.

15 Click on the Plus + sign next to SMART CONTRACT PACKAGES. MyContract@0.0.1 will

automatically be added.

The package consists of three parts: 1. the chaincode as defined by ChaincodeDeploymentSpec.
This defines the code and other meta properties such as name and version, 2. an instantiation policy
which can be syntactically described by the same policy used for endorsement and described in
endorsement-policies.rst, and 3. a set of signatures by the entities that “own” the chaincode.

IBM Blockchain

Hyperledger Fabric Labs Page 80

16 Deploy the smart contract. Click on local_fabric and expand mychannel-

>Peers>peer0.org1.example.com. Right click on the peer and select Install Smart Contract.

17 Select MyContract 0.0.1 on the Choose which package to install on the peer dialog.

18 You will see a Successfully installed smart contract message on the lower right.

19 Expanding the peer, will show the deployed smart contract as shown below.

IBM Blockchain

Hyperledger Fabric Labs Page 81

20 Click on the gear icon and then Command Palette to bring up a list of commands.

IBM Blockchain

Hyperledger Fabric Labs Page 82

21 Instantiate the smart contract. Enter IBM Blockchain in the command palette dialog to filter the
search and then click on IBM Blockchain Platform: Instantiate Smart Contract. Alternatively you
can also right click on the channel under the local-fabric instance and choose to
Instantiate/Upgrade the Smart Contract.

IBM Blockchain

Hyperledger Fabric Labs Page 83

22 Click on mychannel to the Choose a channel to instantiate the smart contract on smart

dialog.

23 Click on MyContract@0.0.1 to the Choose a smart contract and version to instantiate dialog.

24 Be sure to enter instantiate to the optional: What function to you want to call? dialog. Then
press enter.

.
25 Press enter to the optional: What are the arguments to the function … dialog.

26 You will see the Blockchain Extension: Instantiating Smart Contract message on the lower right.

27 This will take a minute or two since a chaincode docker image is being created for your smart

contract. Once the smart contract has been successfully instantiated, you will see Instantiated

IBM Blockchain

Hyperledger Fabric Labs Page 84

Smart Contracts and MyContract@0.0.1 show up under mychannel.

1.5. Unit test the smart contract without blockchain

In this section we will unit test the smart contract that has been generated using npm test. This
will run the Node.js package’s test script using the Mocha test framework as defined in the
package.json file. The test module uses a stub interface to unit test the functions. This is useful
for initial unit testing before connecting to real systems or blockchain network. Mocha is a feature-
rich JavaScript test framework running on Node.js and in the browser. Mocha tests run serially,
allowing for flexible and accurate reporting, while mapping uncaught exceptions to the correct test
cases.

1 Switch back to the Explorer view by clicking on the Explorer icon.

IBM Blockchain

Hyperledger Fabric Labs Page 85

2 In the smart contract navigation tree, expand test and click on my-contract.js. This is a Node.js

module we will invoke with the npm test. Note the test module will exercise all three transactions.

3 Right click on my-contract.js and select Open in Terminal.

IBM Blockchain

Hyperledger Fabric Labs Page 86

4 Enter the following on the terminal window as show below:

npm test

5 You should see the output below in the terminal window. All tests have succeeded.

IBM Blockchain

Hyperledger Fabric Labs Page 87

1.6. Test smart contract using embedded Hyperledger Fabric runtime

In this section we will test the smart contract that has been generated, deployed, and instantiated
using the embedded Hyperledger Fabric runtime.

1 Switch back to the IBM Blockchain Platform view by clicking on the icon as shown below.

IBM Blockchain

Hyperledger Fabric Labs Page 88

2 View the log file output from the chaincode container for the MyContract-0.0.1 Smart Contract. In

the terminal window open from the last section, enter the command below. Note, the name of the
Docker chaincode container is easily determined using the docker ps command.

 docker logs -f dev-peer0.org1.example.com-MyContract-0.0.1

3 Right click on transaction1 and select Submit Transaction.

IBM Blockchain

Hyperledger Fabric Labs Page 89

4 Type Hello and press enter/return at the argument prompt at the top of the view as follows.

5 You should see the output below in the terminal window. The transaction has succeeded.

6 We will now look at the output displayed from the chaincode terminal. Click the Terminal pane
and you should see the output below in the terminal window. The name of the transaction and the
text you entered for the argument is displayed.

1.7. Generate a test client for the smart contract

IBM Blockchain

Hyperledger Fabric Labs Page 90

In this section we will generate a test client for the smart contract that has been generated,
deployed, and instantiated using the embedded Hyperledger Fabric runtime.

1 Right click on MyContract@0.0.1 and select Generate Smart Contract Tests.

2 Select JavaScript as the preferred test language.

3 Wait a few minutes for the npm packages to install. A new JavaScript test module is created and
opened. You should see a message that packages have been installed as follows.You can close
the Visual Studio Code is unable to watch for file changes … box if it appears as shown
below.

IBM Blockchain

Hyperledger Fabric Labs Page 91

4 Scroll down in the test module to the test for transaction1. Replace the null argument with the
string Hello, save the file, and click Run Test.

5 You should see the test passed as shown below in the terminal pane.

IBM Blockchain

Hyperledger Fabric Labs Page 92

6 You can also view the last output from the chaincode container by selecting 1: docker as shown

to go back to the first terminal window pane. You will see you now have an additional line
displaying transaction1 Hello.

1.8. Debug the smart contract (Optional)

In this section we will debug the smart contract that has been generated, deployed, and
instantiated using the embedded Hyperledger Fabric runtime.

IBM Blockchain

Hyperledger Fabric Labs Page 93

6 Click on the icon as shown below to Disconnect from a Blockchain.

7 Right click on local_fabric and select Toggle Development Mode.

8 You should see the Successfully Toggled Development Mode message below.

IBM Blockchain

Hyperledger Fabric Labs Page 94

9 Select the Debug icon pane and then click the green Play button to package and install the
smart contract.

10 Switch back to the IBM Blockchain Platform view. Upgrade the Smart Contract with the

generated debug Smart Contract. Right click on MyContact@0.0.1 and select Upgrade
Smart Contract.

11 Select the debug version of the Smart Contract package as shown below.

12 Enter instantiate and press the enter key.

IBM Blockchain

Hyperledger Fabric Labs Page 95

13 Leave arguments empty at the arguments prompt and press the enter key.

14 Now let’s set a break point. Switch back to the explorer view, close and reopen the my-
contract.js file under the lib folder if already open. For transaction1, click on the line number
next to the console.info(‘transaction1’, arg1);

15 Switch back to the IBM Blockchain Platform view and right click on transaction1 and select
Submit Transaction.

IBM Blockchain

Hyperledger Fabric Labs Page 96

16 At the argument prompt, enter Hello or a string of your choosing and press the enter key.

17 Execution of the smart contract stops at the breakpoint you set. Within the debug pane, press
the continue icon.

18 Click the DEBUG CONSOLE tab to see the output displayed from execution of transaction1.

IBM Blockchain

Hyperledger Fabric Labs Page 97

Note transaction1 is displayed along with the argument you provided which was Hello in this
example.

19 Repeat steps 11-12 above. This time, click the DEBUG CONSOLE pane and enter arg1 and
then click the continue icon. Be quick about it as the transaction will time out on you. This is
one way to interrogate or set a variable. To set the argument, you would enter
arg1=”YourFirstName” for example.

20 Repeat steps 11-12 above. This time, go to the Debug view. You can see the value you set
for arg1 under the Local Variables section. Click the continue icon

IBM Blockchain

Hyperledger Fabric Labs Page 98

1.9. Lab Cleanup

1 Navigate back to the IBM Blockchain Platform view. You should know how to do this by now.

2 Click on the icon as shown below to Disconnect from a Blockchain.

3 Select the Command Palette and then select Teardown Fabric Runtime.

IBM Blockchain

Hyperledger Fabric Labs Page 99

4 Select local_fabric as the Fabric runtime to teardown.

5 Click Yes to the prompt on the lower right of VSCode to destroy all world state and
ledger data.

IBM Blockchain

Hyperledger Fabric Labs Page 100

6 The Docker containers are stopped and removed along with the volumes as shown below.

7 Close VSCode by choosing File->Exit from the VSCode menu bar.

IBM Blockchain

Hyperledger Fabric Labs Page 101

Appendix B. Appendix A. Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be

IBM Blockchain

Hyperledger Fabric Labs Page 102

the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Blockchain

Hyperledger Fabric Labs Page 103

Appendix B. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube
Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp.
and Quantum in the U.S. and other countries.

IBM Blockchain

Hyperledger Fabric Labs Page 104

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks of

IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Hyperledger Fabric Labs Page 105

IBM Blockchain Hands-On
Go Chaincode and Testing in Development Mode
Lab Five

IBM Blockchain

Hyperledger Fabric Labs
 Page 106

Contents
OVERVIEW 107
CHAINCODE APIS .. 108
WRITING SIMPLE ASSET CHAINCODE ... 109

1.1. PERFORM PREREQUISITE LAB CLEANUP ... 109
1.2. CHOOSING A LOCATION FOR THE CODE ... 109
1.3. TESTING USING DEV MODE ... 114
1.4. TESTING NEW CHAINCODE .. 116
1.5. CHAINCODE ENCRYPTION ... 116
1.6. MANAGING EXTERNAL DEPENDENCIES FOR CHAINCODE WRITTEN IN GO .. 117

APPENDIX A. APPENDIX A. NOTICES .. 118
APPENDIX B. TRADEMARKS AND COPYRIGHTS .. 120

IBM Blockchain

Hyperledger Fabric Labs
 Page 107

Overview

What is Chaincode? Chaincode is a program, written in Go, node.js, or Java that implements a
prescribed interface. Chaincode runs in a secured Docker container isolated from the endorsing
peer process. Chaincode initializes and manages the ledger state through transactions submitted
by applications.

A chaincode typically handles business logic agreed to by members of the network, so it is similar
to a “smart contract”. A chaincode can be invoked to update or query the ledger in a proposal
transaction. Given the appropriate permission, a chaincode may invoke another chaincode, either in
the same channel or in different channels, to access its state. Note that, if the called chaincode is
on a different channel from the calling chaincode, only read query is allowed. That is, the called
chaincode on a different channel is only a Query , which does not participate in state validation
checks in subsequent commit phase.

IBM Blockchain

Hyperledger Fabric Labs
 Page 108

Chaincode APIs

In the following sections, we will explore chaincode through the eyes of an application developer.
We’ll present a simple chaincode sample application and walk through the purpose of each method
in the Chaincode Shim API.

There is another set of chaincode APIs that allow the client (submitter) identity to be used for access
control decisions, whether that is based on client identity itself, or the org identity, or on a client identity
attribute. For example, an asset that is represented as a key/value may include the client’s identity, and
only this client may be authorized to make updates to the key/value. The client identity library has APIs
that chaincode can use to retrieve this submitter information to make such access control decisions. We
won’t cover that in this tutorial, however it is documented here.

Every chaincode program must implement the Chaincode interface:

• Go
• node.js
• Java

whose methods are called in response to received transactions. In particular the Init method is called
when a chaincode receives an instantiate or upgrade transaction so that the chaincode may perform any
necessary initialization, including initialization of application state. The Invoke method is called in
response to receiving an invoke transaction to process transaction proposals.

The other interface in the chaincode “shim” APIs is the ChaincodeStubInterface :

• Go
• node.js
• Java

which is used to access and modify the ledger, and to make invocations between chaincodes.

In this tutorial using Go chaincode, we will demonstrate the use of these APIs by implementing a simple
chaincode application that manages simple “assets”.

IBM Blockchain

Hyperledger Fabric Labs
 Page 109

Writing Simple Asset Chaincode

Our application is a basic sample chaincode to create assets (key-value pairs) on the ledger.

1.1. Perform prerequisite lab cleanup

1 Start a terminal
2 cd ~/fabric-samples/first-network
3 Issue the following command to shutdown any existing blockchain networks. Answer ‘Y’ to the

Continue prompt.

./byfn.sh down

4 Issue the following command to kill any active or stale containers:

 docker rm -f $(docker ps -aq)

5 Issue the following command to clear any cached networks. Answer ‘Y’ to the Continue prompt.

 docker network prune

6 Delete the underlying chaincode image for the fabcar smart contract.

 docker rmi dev-peer0.org1.example.com-fabcar-1.0-5c906e402ed29f20260ae42283216aa75549c571e2e380f3615826365d8269ba

1.2. Choosing a Location for the Code

If you haven’t been doing programming in Go, you may want to make sure that you have Go
Programming Language installed and your system properly configured.
Now, you will want to create a directory for your chaincode application as a child directory
of $GOPATH/src/ .

To keep things simple, let’s use the following command:

mkdir -p $GOPATH/src/sacc && cd $GOPATH/src/sacc

Now, let’s create the source file that we’ll fill in with code:

touch sacc.go

Housekeeping

IBM Blockchain

Hyperledger Fabric Labs
 Page 110

First, let’s start with some housekeeping. As with every chaincode, it implements theChaincode
interface in particular, Init and Invoke functions. So, let’s add the Go import statements for the

necessary dependencies for our chaincode. We’ll import the chaincode shim package and
the peer protobuf package. Next, let’s add a struct SimpleAsset as a receiver for Chaincode shim

functions.

package main

import (
 "fmt"

 "github.com/hyperledger/fabric/core/chaincode/shim"
 "github.com/hyperledger/fabric/protos/peer"
)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

Initializing the Chaincode

Next, we’ll implement the Init function.

// Init is called during chaincode instantiation to initialize any data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

}

Note	

Note that chaincode upgrade also calls this function. When writing a chaincode that will upgrade an
existing one, make sure to modify the Init function appropriately. In particular, provide an empty “Init”
method if there’s no “migration” or nothing to be initialized as part of the upgrade.

Next, we’ll retrieve the arguments to the Init call using the
ChaincodeStubInterface.GetStringArgs function and check for validity. In our case, we are expecting
a key-value pair.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }

IBM Blockchain

Hyperledger Fabric Labs
 Page 111

}

Next, now that we have established that the call is valid, we’ll store the initial state in the ledger. To
do this, we will call ChaincodeStubInterface.PutState with the key and value passed in as the
arguments. Assuming all went well, return a peer.Response object that indicates the initialization was
a success.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }

 // Set up any variables or assets here by calling stub.PutState()

 // We store the key and the value on the ledger
 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
 }
 return shim.Success(nil)
}

Invoking the Chaincode

First, let’s add the Invoke function’s signature.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The 'set'
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

}

As with the Init function above, we need to extract the arguments from the ChaincodeStubInterface .
The Invoke function’s arguments will be the name of the chaincode application function to invoke. In
our case, our application will simply have two functions: set and get , that allow the value of an
asset to be set or its current state to be retrieved.

We first call ChaincodeStubInterface.GetFunctionAndParameters to extract the function name and
the parameters to that chaincode application function.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

}

IBM Blockchain

Hyperledger Fabric Labs
 Page 112

Next, we’ll validate the function name as being either set or get , and invoke those chaincode
application functions, returning an appropriate response via the shim.Success or shim.Error functions
that will serialize the response into a gRPC protobuf message.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

 var result string
 var err error
 if fn == "set" {
 result, err = set(stub, args)
 } else {
 result, err = get(stub, args)
 }
 if err != nil {
 return shim.Error(err.Error())
 }

 // Return the result as success payload
 return shim.Success([]byte(result))
}

Implementing the Chaincode Application

As noted, our chaincode application implements two functions that can be invoked via
the Invoke function. Let’s implement those functions now. Note that as we mentioned above, to
access the ledger’s state, we will leverage
the ChaincodeStubInterface.PutState and ChaincodeStubInterface.GetState functions of the
chaincode shim API.

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 2 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")
 }

 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return "", fmt.Errorf("Failed to set asset: %s", args[0])
 }
 return args[1], nil
}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 1 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key")
 }

 value, err := stub.GetState(args[0])
 if err != nil {
 return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0], err)

IBM Blockchain

Hyperledger Fabric Labs
 Page 113

 }
 if value == nil {
 return "", fmt.Errorf("Asset not found: %s", args[0])
 }
 return string(value), nil
}

Pulling it All Together

Finally, we need to add the main function, which will call the shim.Start function. Here’s the whole
chaincode program source.

package main

import (
 "fmt"

 "github.com/hyperledger/fabric/core/chaincode/shim"
 "github.com/hyperledger/fabric/protos/peer"
)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }

 // Set up any variables or assets here by calling stub.PutState()

 // We store the key and the value on the ledger
 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
 }
 return shim.Success(nil)
}

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

 var result string
 var err error
 if fn == "set" {
 result, err = set(stub, args)
 } else { // assume 'get' even if fn is nil
 result, err = get(stub, args)

IBM Blockchain

Hyperledger Fabric Labs
 Page 114

 }
 if err != nil {
 return shim.Error(err.Error())
 }

 // Return the result as success payload
 return shim.Success([]byte(result))
}

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 2 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")
 }

 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return "", fmt.Errorf("Failed to set asset: %s", args[0])
 }
 return args[1], nil
}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 1 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key")
 }

 value, err := stub.GetState(args[0])
 if err != nil {
 return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0], err)
 }
 if value == nil {
 return "", fmt.Errorf("Asset not found: %s", args[0])
 }
 return string(value), nil
}

// main function starts up the chaincode in the container during instantiate
func main() {
 if err := shim.Start(new(SimpleAsset)); err != nil {
 fmt.Printf("Error starting SimpleAsset chaincode: %s", err)
 }
}

Building Chaincode

Now let’s compile your chaincode.

go get -u github.com/hyperledger/fabric/core/chaincode/shim
go build

Assuming there are no errors, now we can proceed to the next step, testing your chaincode.

1.3. Testing Using dev mode

IBM Blockchain

Hyperledger Fabric Labs
 Page 115

Normally chaincodes are started and maintained by peer. However in “dev mode”, chaincode is built
and started by the user. This mode is useful during chaincode development phase for rapid
code/build/run/debug cycle turnaround.

We start “dev mode” by leveraging pre-generated orderer and channel artifacts for a sample dev
network. As such, the user can immediately jump into the process of compiling chaincode and driving
calls.

Install Hyperledger Fabric Samples

Navigate to the chaincode-docker-devmode directory of the fabric-samples clone:

cd chaincode-docker-devmode

Now open three terminals and navigate to your chaincode-docker-devmode directory in each.

Terminal 1 - Start the network

Use the following command to start the network with the SingleSampleMSPSolo orderer profile and
launch the peer in “dev mode”.

 docker-compose -f docker-compose-simple.yaml up

The command also launches two additional containers - one for the chaincode environment and a
CLI to interact with the chaincode. The commands for create and join channel are embedded in
the CLI container, so we can jump immediately to the chaincode calls.

Terminal 2 - Build & start the chaincode

Execute the following command in terminal 2:

docker exec -it chaincode bash

You should see the following:

root@d2629980e76b:/opt/gopath/src/chaincode#

Now, compile your chaincode:

cd sacc
go build

Now run the chaincode:

CORE_PEER_ADDRESS=peer:7052 CORE_CHAINCODE_ID_NAME=mycc:0 ./sacc

The chaincode is started with peer and chaincode logs indicating successful registration with the
peer. Note that at this stage the chaincode is not associated with any channel. This is done in
subsequent steps using the instantiate command.

IBM Blockchain

Hyperledger Fabric Labs
 Page 116

Terminal 3 - Use the chaincode

Even though you are in --peer-chaincodedev mode, you still have to install the chaincode so the
life-cycle system chaincode can go through its checks normally. This requirement may be
removed in the future when in --peer-chaincodedev mode.

We’ll leverage the CLI container to drive these calls.

docker exec -it cli bash
peer chaincode install -p chaincodedev/chaincode/sacc -n mycc -v 0
peer chaincode instantiate -n mycc -v 0 -c '{"Args":["a","10"]}' -C myc

Now issue an invoke to change the value of “a” to “20”.

peer chaincode invoke -n mycc -c '{"Args":["set", "a", "20"]}' -C myc

Finally, query a . We should see a value of 20 .

peer chaincode query -n mycc -c '{"Args":["query","a"]}' -C myc

1.4. Testing new chaincode

By default, we mount only sacc . However, you can easily test different chaincodes by adding them to
the chaincode subdirectory and relaunching your network. At this point they will be accessible in
your chaincode container.

1.5. Chaincode encryption

In certain scenarios, it may be useful to encrypt values associated with a key in their entirety or
simply in part. For example, if a person’s social security number or address was being written to the
ledger, then you likely would not want this data to appear in plaintext. Chaincode encryption is
achieved by leveraging the entities extension which is a BCCSP wrapper with commodity factories
and functions to perform cryptographic operations such as encryption and elliptic curve digital
signatures. For example, to encrypt, the invoker of a chaincode passes in a cryptographic key via the
transient field. The same key may then be used for subsequent query operations, allowing for proper
decryption of the encrypted state values.

For more information and samples, see the Encc Example within the fabric/examples directory. Pay
specific attention to the utils.go helper program. This utility loads the chaincode shim APIs and
Entities extension and builds a new class of functions
(e.g. encryptAndPutState & getStateAndDecrypt) that the sample encryption chaincode then
leverages. As such, the chaincode can now marry the basic shim APIs of Get and Put with the
added functionality of Encrypt and Decrypt .

IBM Blockchain

Hyperledger Fabric Labs
 Page 117

1.6. Managing external dependencies for chaincode written in Go

If your chaincode requires packages not provided by the Go standard library, you will need to include
those packages with your chaincode. There are many tools available for managing (or “vendoring”)
these dependencies. The following demonstrates how to use govendor :

govendor init
govendor add +external // Add all external package, or
govendor add github.com/external/pkg // Add specific external package

This imports the external dependencies into a
local vendor directory. peer chaincode package and peer chaincode install operations will then
include code associated with the dependencies into the chaincode package.

IBM Blockchain

Hyperledger Fabric Labs
 Page 118

Appendix C. Appendix A. Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be

IBM Blockchain

Hyperledger Fabric Labs
 Page 119

the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Blockchain

Hyperledger Fabric Labs
 Page 120

Appendix B. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube
Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp.
and Quantum in the U.S. and other countries.

IBM Blockchain

Hyperledger Fabric Labs
 Page 121

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks of

IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

