

IBM Blockchain Hands-On
IBM Blockchain Platform Visual Studio Code Extension:

Developing your First Contract
Lab Two

Table of Contents

Disclaimer ... 3

1 Overview of the lab 2 environment and scenario ... 5

1.1 Lab 2 Scenario ... 6

2 Lab 2: An overview of the VSCode development experience ... 7

IBM Blockchain

IBM Blockchain Platform Labs 3 Lab 2

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion. Information regarding potential future
products is intended to outline our general product direction and it should not be relied on in
making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,
or legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve
results like those stated here.

Information in these presentations (including information relating to products that have not
yet been announced by IBM) has been reviewed for accuracy as of the date of
initial publication and could include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is distributed “as is”
without any warranty, either express or implied. In no event, shall IBM be liable for any
damage arising from the use of this information, including but not limited to, loss of data,
business interruption, loss of profit or loss of opportunity. IBM products and services are
warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously installed. Regardless,
our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,
isolated environments. Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which
IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent
session speakers, and do not necessarily reflect the views of IBM. All materials and

IBM Blockchain

IBM Blockchain Platform Labs 4 Lab 2

discussions are provided for informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual participant or their specific
situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s business and any
actions the customer may need to take to comply with such laws. IBM does not provide legal
advice or represent or warrant that its services or products will ensure that the customer
follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested
those products about this publication and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products. IBM does not
warrant the quality of any third-party products, or the ability of any such third-party products
to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or
implied, including but not limited to, the implied warranties of merchantability and fitness
for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any
right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in
the presentation] are trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2019 International Business Machines Corporation. No part of this document may be
reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM.

IBM Blockchain

IBM Blockchain Platform Labs 5 Lab 2

1 Overview of the lab 2 environment and scenario

This lab is a technical introduction to blockchain, specifically smart contract development
using the latest developer enhancements in the Linux Foundation’s Hyperledger Fabric v1.4
and shows you how IBM’s Blockchain Platform’s developer experience can accelerate your
pace of development.

Note: The screenshots in this lab guide were taken using version 1.31.1 of VSCode, and version
0.3.0 of the IBM Blockchain Platform plugin. If you use different versions, you may see
differences those shown in this guide.

Start here. Instructions are always shown on numbered lines like this one:

__ 1. If it is not already running, start the virtual machine for the lab. The instructor will tell

you how to do this if you are unsure.

__ 2. Wait for the image to boot and for the associated services to start. This happens
automatically but might take several minutes. The image is ready to use when the
desktop is visible as per the screenshot below.

If it asks you to login, the userid and password are both “blockchain”.

IBM Blockchain

IBM Blockchain Platform Labs 6 Lab 2

1.1 Lab 2 Scenario

This lab will take you through using the smart contract development environment in
Visual Studio Code (VSCode). Although smart contracts can be developed in any editor,
IBM Blockchain Platform provides a plugin for VSCode that greatly simplifies the steps
required. In addition, it also provides a “sandbox” development environment for easy
development and test purposes using a real Hyperledger Fabric runtime.

In lab3, we will take you through using a sample smart contract that comes with
Hyperledger Fabric through the VSCode lens, where you will learn how to import
contracts and interact with the development environment in more detail.

In lab 4, you will use VSCode to connect to another Hyperledger Fabric sample
network, this time running outside of VSCode and learn how to interact with an
external network in order to test smart contracts belonging to an existing network.

In lab 5, you will use VSCode to import the same Commercial Paper sample provided
in lab 4, but will use all the features in the IBM Blockchain Platform extension and
local_fabric embedded instance to deploy, upgrade and extend smart contracts and
generate functional tests.

Note that if you get an “Software Updater” pop-up at any point during the lab, please
click “Remind Me Later”:

IBM Blockchain

IBM Blockchain Platform Labs 7 Lab 2

2 Lab 2: An overview of the VSCode development
experience

__ 3. Launch VSCode by clicking on the VSCode Icon in the toolbar.

IBM Blockchain

IBM Blockchain Platform Labs 8 Lab 2

__ 4. When VSCode opens, click on the IBM Blockchain Platform (IBP) icon in the Activity
Bar in VSCode as shown below.

This will open the Homepage for IBM Blockchain Platform. As highlighted below, there
will be a message in the bottom right telling you the extension has activated and other
information telling you some of the capabilities of the plugin. These informational
messages are used a lot in VSCode and will appear throughout this lab at various
points.

If you close the Homepage by mistake and need to get back to it, you can open it again
by pressing “ctrl + shift + p” to open the VSCode command palette and typing the word
home in the dialogue box to find the “IBM Blockchain Platform: View Homepage”
command.

IBM Blockchain

IBM Blockchain Platform Labs 9 Lab 2

__ 5. Once you have had a look at the Homepage, click on the “Create a new smart
contract project” link toward the top of the Homepage.

IBM Blockchain

IBM Blockchain Platform Labs 10 Lab 2

__ 6. Notice a couple of informational messages will appear in the bottom right of the
VSCode window. You can dismiss these once you have read them:

__ 7. After a little delay, at the top of the screen, you will be presented with a choice of
languages. For this lab we are going to use JavaScript, so click to choose the JavaScript
option:

__ 8. In the dialogue that appears, first choose workspace in the left-hand bar, to change
into the workspace folder, then click the create folder icon in the top right (), enter
the name first-contract as the “folder name” and click Create.

IBM Blockchain

IBM Blockchain Platform Labs 11 Lab 2

__ 9. After making sure you are in the /blockchain/workspace/first-contract folder, click
Open in the bottom right.

__ 10. Next, select the “Add to workspace” option that appears at the top of the
VSCode window.

__ 11. Wait for the information messages to appear whilst the project is generated as
this can take up to a minute or more to complete.

__ 12. You may notice that another copy of the IBP Homepage opens at this point.
This can safely be closed by clicking on the “x” on the window.

IBM Blockchain

IBM Blockchain Platform Labs 12 Lab 2

__ 13. We can now switch to the Explorer view briefly to see the files generated by the
plugin for the new smart contract. To do this you can either press “ctrl + shift + e” on
your keyboard or choose the top left folder shaped icon in the activity bar ().

__ 14. Click to expand the lib folder and open the my-contract.js file by double-
clicking on it. This is the main file for the contract.

When the my-contract.js file is open, you should see it in the main window to the right.

__ 15. Take a look at the contents of this file. As you can see, the main body of the
code is on lines 7 – 23. These define a very simple smart contract that does not make
any updates to the ledger, it only echoes a string when a transaction function is called.

A more detailed overview of the code is as follows:

Line 7 imports a Contract definition from the fabric-contract-api node module. This
makes the Fabric API available to the smart contract to use.

Line 9 starts the definition of a class called MyContract that extends the Contract we
imported above. This provides our class with several capabilities such as defining our
class to be a contract that can be called by the framework and giving us access to
transaction handlers and a transaction based context called ctx. The context allows
the framework to pass extra information into the transaction function when it is called.
For example it can pass information about the identity of the caller of the contract as
well as methods to query the world-state when the transaction is called.

IBM Blockchain

IBM Blockchain Platform Labs 13 Lab 2

Line 11 shows the definition of an instantiate method which can be used to initialise
the contract when it is first deployed or after an upgrade. By default, this method takes
a single context argument called ctx which is a context as described above. If required,
it could take extra parameters as well.

Line 15 defines a transaction function called “transaction1”. All transaction functions
must take a context as their first parameter, usually called “ctx”. This is normally
followed by one or more arguments that are passed to the transaction from the client.
Line 19 defines a second transaction function called “transaction2” which this time
takes two parameters after the context.

__ 16. Next, we will package the smart contract. Click on the IBP icon in the sidebar to
switch back to the IBM Blockchain Platform view.

IBM Blockchain

IBM Blockchain Platform Labs 14 Lab 2

__ 17. From the Smart Contract Packages view click the “+” icon to package the
smart contract into a deployment package. If you do not see the “+”, first click in the
Smart Contract Packages view.

You will first see an informational message about packaging the contract, then you will
see a package appear after it is created, called first-contract@0.0.1

This package is now ready to be installed onto a blockchain peer.

__ 18. In the LOCAL FABRIC OPS view, click on the … and select Start Fabric
Runtime.

The circle icon next to local_fabric under FABRIC GATEWAYS may appear to spin and
text will appear in the Output window to show progress. Note that this may take a little
time to complete.

__ 19. Once the text “[channelCmd] executeJoin -> INFO 002
Successfully submitted proposal to join channel” appears in the Output
window and the local_fabric circle icon is solid, click on admin@org1.example.com
under local_fabric in the FABRIC GATEWAYS view to connect. At this point there will
be an information message confirming that the connection has been made:

IBM Blockchain

IBM Blockchain Platform Labs 15 Lab 2

__ 20. When the connection is made, you should see the channel called mychannel
appear, both under the LOCAL FABRIC OPS view and the FABRIC GATEWAYS view.
Underneath Nodes in the LOCAL FABRIC OPS view, you will see the peer called
peer0.org1.example.com.

This is the same single-channel, single-peer network that the plugin creates for test
and development purposes.

__ 21. Hyperledger Fabric requires that contracts are installed on a peer and then
instantiated on a channel before use, so that’s what we will do next over the next few
steps.

__ 22. Click on +Install in the LOCAL FABRIC OPS view. You may need to scroll on the

view to see this option.

__ 23. From the “Choose a peer to install the smart contract on” pop up at the top of
the screen, choose “peer0.org1.example.com” from the options.

IBM Blockchain

IBM Blockchain Platform Labs 16 Lab 2

__ 24. From the “Choose which package to install on the peer” pop up at the top of
the screen, choose “first-contract@0.0.1 Packaged” from the options.

When the package is installed, an information message will be shown confirming the
install:

Now under Installed in the LOCAL FABRIC OPS view you can see the installed
contract:

__ 25. Next, we have to instantiate the contract. Click on +Instantiate in the LOCAL

FABRIC OPS view.

__ 26. From the “Choose a channel to instantiate the smart contract on” pop up at
the top of the screen, choose “mychannel” from the options:

IBM Blockchain

IBM Blockchain Platform Labs 17 Lab 2

__ 27. From the “Choose a smart contract and version to instantiate” pop up at the
top of the screen, choose “first-contract@0.0.1 Installed” from the options:

__ 28. In the pop-up dialogue box at the top of the screen asking “optional: What
function do you want to call? …” make sure you enter the word instantiate into the
entry field as shown below. Before you press enter, check your spelling and make sure
it is correct and is all lowercase without any quotes or spaces around it. This name has
to exactly match the name of the transaction in your contract that will be called at
instantiate time and in our default contract as we saw above this is called instantiate.

In the next dialogue that asks for parameters to the function, just press “Enter” as our
instantiate function does not require any apart from the context “ctx” which is
automatically provided by the framework.

Instantiating a contract can take several minutes as a new docker container is built to
contain the contract. Whilst it is happening you should see this information message

When it is complete you will see this information message

Once complete, in the “FABRIC GATEWAYS” view, mychannel can be expanded
change show fabcar@1.0.0.

IBM Blockchain

IBM Blockchain Platform Labs 18 Lab 2

__ 29. Expand the instantiated contract first-contract@0.0.1, and you will see the
three transactions that were defined in the contract are now available.

At this point the contract is now ready to be called. The instantiate transaction has
already been run when the contract was instantiated by the framework. This
transaction simply prints out the word “instantiate” to the console. Because the
contract is running inside a docker container, we need to look at the docker logs to see
the output. To see the docker logs we need to get the name of the docker container that
is running the contract. To do this we could list all the running containers with “docker
ps” and look for the right one.

However, as the names of the containers used by Fabric and the IBP plugin are
deterministic, we can simple issue the command in the terminal window inside VSCode.

__ 30. Switch to the terminal window at the bottom of the VSCode screen

Note that if your window size is small, you might not be able to see the Terminal
window and you must first click on the ellipsis (…) to allow you to view it.

IBM Blockchain

IBM Blockchain Platform Labs 19 Lab 2

__ 31. At the prompt enter this command (you can copy and paste it if you wish):

docker logs fabricvscodelocalfabric-peer0.org1.example.com-first-contract-0.0.1

This will produce several lines of output, most of which you can ignore and at the
bottom of which will be the word “instantiate”.

__ 32. Now we will execute another transaction. From the “FABRIC GATEWAYS”
view, expand out the instantiated contract as you did before until you can see the
transactions, right click on “transaction1” and choose “submit transaction”:

IBM Blockchain

IBM Blockchain Platform Labs 20 Lab 2

__ 33. In the dialogue at the top of the screen enter the text “Hello World” or some
similar text as shown below and press “Enter”. Note that you should not enter the
quotes around the words as otherwise they will be taken as part of the string itself.

An information message will inform you when the transaction is complete:

__ 34. To take a look at the output, switch back to the terminal view and press the “up
arrow” key to choose the docker logs command again. If you have trouble you can just
re-enter it:

docker logs fabricvscodelocalfabric-peer0.org1.example.com-first-contract-0.0.1

You should now see the output contains “transaction1” followed by the text you
entered above.

IBM Blockchain

IBM Blockchain Platform Labs 21 Lab 2

__ 35. Finally let’s call the second transaction for completeness. Right click on
transaction2 as you did above for the first transaction. This time the transaction takes
two parameters, so we need to enter each one separated by a comma, such as
Hello,first-contract . Note that there should be no quotes or spaces around the
parameters as shown below as otherwise they are taken as part of the parameters itself
- they are not stripped off before the transaction is called. Press “Enter” when you are
done.

__ 36. Again, switch back to the terminal view as you did before and re-execute the
docker logs command again to see the output from the second transaction call. You
should see something like this below:

We have now almost completed this lab – an overview of the VSCode development
experience. All that remains is to clear up the environment ready for the next lab.

__ 37. From the IBP Smart Contract Packages view, right-click on the first-
contract@0.0.1 package and choose the Delete Package option as shown below to
remove it:

IBM Blockchain

IBM Blockchain Platform Labs 22 Lab 2

__ 38. From the FABRIC GATEWAYS view, select the Disconnect from Gateway icon
as shown below:

__ 39. From the LOCAL FABRIC OPS view, click on the … and select the “Teardown
Fabric Runtime” option from the context menu:

__ 40. From the dialogue the appears in the bottom right, choose the “Yes” button:

__ 41. Switch back to the explorer view and close all open editors, including the “IBM
Blockchain Platform Home” by clicking on the “x” button on each tab

IBM Blockchain

IBM Blockchain Platform Labs 23 Lab 2

__ 42. Right click on the “first-contract” folder and chose the “Remove Folder from
Workspace” context menu option.

Note: if you cannot see the Explorer view, click on the Explorer icon again to make it
re-appear.

__ 43. This will re-open the “IBM Blockchain Platform Home” page and leave your
workspace ready for the next lab as shown below:

