

IBM Blockchain Hands-On
IBM Blockchain Platform Visual Studio Code Extension:

Using an Existing Contract
Lab Three

Table of Contents

Disclaimer ... 3

1 Overview of the lab 3 environment and scenario ... 5

1.1 Lab 3 Scenario ... 6

2 Lab 3: Using an Existing Contract .. 8

IBM Blockchain

IBM Blockchain Platform Labs 3 Lab 3

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion. Information regarding potential future
products is intended to outline our general product direction and it should not be relied on in
making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,
or legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve
results like those stated here.

Information in these presentations (including information relating to products that have not
yet been announced by IBM) has been reviewed for accuracy as of the date of
initial publication and could include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is distributed “as is”
without any warranty, either express or implied. In no event, shall IBM be liable for any
damage arising from the use of this information, including but not limited to, loss of data,
business interruption, loss of profit or loss of opportunity. IBM products and services are
warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously installed. Regardless,
our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,
isolated environments. Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which
IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent
session speakers, and do not necessarily reflect the views of IBM. All materials and

IBM Blockchain

IBM Blockchain Platform Labs 4 Lab 3

discussions are provided for informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual participant or their specific
situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s business and any
actions the customer may need to take to comply with such laws. IBM does not provide legal
advice or represent or warrant that its services or products will ensure that the customer
follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested
those products about this publication and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products. IBM does not
warrant the quality of any third-party products, or the ability of any such third-party products
to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or
implied, including but not limited to, the implied warranties of merchantability and fitness
for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any
right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in
the presentation] are trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2019 International Business Machines Corporation. No part of this document may be
reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM.

IBM Blockchain

IBM Blockchain Platform Labs 5 Lab 3

1 Overview of the lab 3 environment and scenario

This lab is a technical introduction to blockchain, specifically smart contract development
using the latest developer enhancements in the Linux Foundation’s Hyperledger Fabric v1.4
and shows you how IBM’s Blockchain Platform’s developer experience can accelerate your
pace of development.

Note: The screenshots in this lab guide were taken using version 1.31.1 of VSCode, and version
0.3.0 of the IBM Blockchain Platform plugin. If you use different versions, you may see
differences those shown in this guide.

Start here. Instructions are always shown on numbered lines like this one:

__ 1. If it is not already running, start the virtual machine for the lab. The instructor will tell

you how to do this if you are unsure.

IBM Blockchain

IBM Blockchain Platform Labs 6 Lab 3

__ 2. Wait for the image to boot and for the associated services to start. This happens
automatically but might take several minutes. The image is ready to use when the
desktop is visible as per the screenshot below.

If it asks you to login, the userid and password are both “blockchain”.

1.1 Lab 3 Scenario

In this lab, we will take you through using a sample smart contract that comes with
Hyperledger Fabric’s sample through the VSCode lens, where you will learn how to
import contracts and interact with the development environment in more detail. After
importing and deploying the contract, you will then use a client application to invoke
some of the contract’s transactions.

Note that if you get an “Software Updater” pop-up at any point during the lab, please
click “Remind Me Later”:

IBM Blockchain

IBM Blockchain Platform Labs 7 Lab 3

IBM Blockchain

IBM Blockchain Platform Labs 8 Lab 3

2 Lab 3: Using an Existing Contract

__ 3. If you have just finished previous VSCode labs, VSCode will already be open so skip
this step and move straight to step __4. If you are starting with this lab, launch VSCode
by clicking on the VSCode Icon in the toolbar.

IBM Blockchain

IBM Blockchain Platform Labs 9 Lab 3

__ 4. Now VSCode is open, if you completed the first VSCode lab, click the Add Folder
button from the Explorer view as shown below:

Note: If you cannot see the Explorer view for any reason, click on its icon in the activity
bar () or press “ctrl + shift + e” to show it.

However, if you did not do the first VSCode lab and you are starting with this lab, you
will not see the “Add Folder” button and you need to choose the File / Add Folder to
Workspace menu option instead:

IBM Blockchain

IBM Blockchain Platform Labs 10 Lab 3

__ 5. Using the screen shot below as a guide, navigate to open a folder as follows
Step 1: Click in the workspace folder on the bottom left of the dialogue.
Step 2: Navigate to the folder:
fabric-getting-started/fabric-samples/chaincode/fabcar
Step 3: Select the folder javascript
Step 4: Click the Add button on the bottom right.

Note: the full path to the javascript folder you are importing for reference is:
/home/blockchain/workspace/fabric-getting-started/fabric-
samples/chaincode/fabcar/

Note 2: The “IBM Blockchain Platform Home” page may automatically open once the
javascript folder has been added to the workspace. If it does, simply close it by clicking
on the “x”.

__ 6. Once the folder is added to the workspace, expand the lib folder and double click on
the fabcar.js smart contract to open it in the main editing view.

IBM Blockchain

IBM Blockchain Platform Labs 11 Lab 3

__ 7. Use the “-” buttons in the fabcar.js file to collapse the transaction definitions, so we
can see a simpler overview of the contract we will be using.

Like the previous example in part 1 of the lab the code starts with the same import of a
Contract definition from the fabric-contract-api node module on line 7. Next there are
five transactions that make up the fabcar sample contract and this time most of the
transactions take parameters and will either query or update a blockchain for real.

Note: The “-” buttons only appear when you move your mouse over the area next to the
right of the line numbers, and left of the code:

IBM Blockchain

IBM Blockchain Platform Labs 12 Lab 3

__ 8. Expand initLedger and study its contents so we can understand what it will do.

Lines 11-82 define the initLedger transaction. This is designed to populate the
blockchain with 10 sample car definitions to work with. We can see that each car is
defined by four properties; color, make, model and owner. After defining an array of 10
cars, it loops through them inserting their definitions into the world state in turn, by
calling the ctx.stub.putState(…) method giving each car an incrementing index like
CAR1, CAR2 etc as it does so. The putState method is made available to the
transaction through the context parameter, ctx by the framework.

We will look at some of the others as we use them in this lab, but first we will package
and install the fabcar contract into the local_fabric dev’ environment in VSCode.

__ 9. Click on the IBP icon in the sidebar to switch to the IBM Blockchain Platform view.

Note: The “IBM Blockchain Platform Home” page may automatically open again, and
if it does, simply close it by clicking on the “x”.

__ 10. From the Smart Contract Packages view click the “+” icon to package the
smart contract into a deployment package. If you do not see the “+”, first click in the
Smart Contract Packages view.

You will first see an informational message about packaging the contract, then you will
see a package appear after it is created, called fabcar@1.0.0.

This package is now ready to be installed onto a blockchain peer.

Next, we will create the IBP local_fabric development environment in VSCode.

IBM Blockchain

IBM Blockchain Platform Labs 13 Lab 3

__ 11. In the LOCAL FABRIC OPS view, click on the … and select Start Fabric
Runtime.

The circle icon next to local_fabric under FABRIC GATEWAYS may appear to spin and
text will appear in the Output window to show progress. Note that this may take a little
time to complete.

__ 12. Once the text “[channelCmd] executeJoin -> INFO 002
Successfully submitted proposal to join channel” appears in the Output
window and the local_fabric circle icon is solid, click on admin@org1.example.com
under local_fabric in the FABRIC GATEWAYS view to connect. At this point there will
be an information message confirming that the connection has been made:

IBM Blockchain

IBM Blockchain Platform Labs 14 Lab 3

__ 13. When the connection is made, you should see the channel called mychannel
appear, both under the LOCAL FABRIC OPS view and the FABRIC GATEWAYS view.
Underneath Nodes in the LOCAL FABRIC OPS view, you will see the peer called
peer0.org1.example.com.

As before, this is the same single-channel, single-peer network that the plugin creates
for test and development purposes.

__ 14. Click on +Install in the LOCAL FABRIC OPS view. You may need to scroll on the
view to see this option.

__ 15. From the “Choose a peer to install the smart contract on” pop up at the top of
the screen, choose “peer0.org1.example.com” from the options.

__ 16. From the “Choose which package to install on the peer” pop up at the top of
the screen, choose “fabcar@1.0.0 Packaged” from the options.

IBM Blockchain

IBM Blockchain Platform Labs 15 Lab 3

When the package is installed, an information message will be shown confirming the
install:

Now under Installed in the LOCAL FABRIC OPS view you can see the installed
contract:

__ 17. Next, we have to instantiate the contract. Click on +Instantiate in the LOCAL
FABRIC OPS view.

__ 18. From the “Choose a channel to instantiate the smart contract on” pop up at
the top of the screen, choose “mychannel” from the options:

IBM Blockchain

IBM Blockchain Platform Labs 16 Lab 3

__ 19. From the “Choose a smart contract and version to instantiate” pop up at the
top of the screen, choose “fabcar@1.0.0 Installed” from the options:

__ 20. In the pop-up dialogue box at the top of the screen asking “optional: What
function do you want to call? …” make sure you enter the word initLedger into the
entry field as shown below. Before you press enter, check your spelling and make sure
it is correct and has the uppercase “L” on Ledger without any quotes or spaces around
it. This name has to exactly match the name of the transaction in the contract that will
be called at instantiate time and in the fabcar contract as we saw above this is called
initLedger. This is different to the previous lab, and shows that you can choose the
name of a function to be called at instantiate time.

In the next dialogue that asks for parameters to the function, just press “Enter” as our
initLedger function does not require any additional parameters apart from the context
“ctx” which is automatically provided by the framework.

Instantiating a contract can take several minutes as a new docker container is built to
contain the contract. Whilst it is happening you should see this information message

When it is complete you will see this information message

Once complete, in the “FABRIC GATEWAYS” view, mychannel can be expanded to
show fabcar@1.0.0.

IBM Blockchain

IBM Blockchain Platform Labs 17 Lab 3

__ 21. Expand the instantiated contract fabcar@1.0.0, and you will see the five

transactions that were defined in the FabCar contract are now available

At this point initLedger has been called to populate the ledger and the other
transactions are ready to be invoked.

In the next few steps we will check that initLedger has done its job correctly by
querying for a car it should have created on the ledger. To do this we are going to call
the queryCar transaction from within VSCode, so take a quick look at its
implementation. The definition of queryCar is between lines 84-91 of fabcar.js. It is a
very simple transaction that just looks for the car that was passed into the transaction
as a parameter and either returns the requested car or an error if it does not exist. If we
look at the definition of the first car in the initLedger transaction we can see it is
defined as a blue Toyota Prius owned by Tomoko:

This was inserted into the world state with the index CAR0 in the loop at the end of
initLedger and this is the car we are going to query for.

IBM Blockchain

IBM Blockchain Platform Labs 18 Lab 3

__ 22. From the “FABRIC GATEWAYS” view, expand the instantiated contract as you
did before until you can see the transactions, right click on “queryCar” and choose
“Submit Transaction”:

__ 23. In the dialogue at the top of the screen enter the text CAR0 and press “Enter”.
Note that you should not enter any quotes around the string as otherwise they will be
taken as part of the string itself which will result in an error.

An information message will inform you when the transaction is complete:

Although the transaction is successful you do not see the data from the ledger in the
response. This is because the IBP VSCode plugin itself does not currently show
responses from transaction directly inside VSCode itself – this is a feature on its
backlog for implementation at a later date.

Therefore, we will look at the console output from queryCar in the docker logs for the
fabcar docker container instead. To be able to see the docker logs, we need to get the
name of the docker container that is running the fabcar contract. To do this we could
list all the running containers with “docker ps” and look for the right one. However, as
the names of the containers used by Hyperledger Fabric and the IBP plugin are
deterministic, we can simply issue the command in the terminal window inside VSCode.

IBM Blockchain

IBM Blockchain Platform Labs 19 Lab 3

__ 24. Switch to the terminal window at the bottom of the VSCode screen:

Note that if your window size is small, you might not be able to see the Terminal
window and you must first click on the ellipsis (…) to allow you to view it.

__ 25. At the prompt enter this command (you can copy and paste it if you wish):

docker logs fabricvscodelocalfabric-peer0.org1.example.com-fabcar-1.0.0

This will produce several lines of output from the initial call to initLedger, which you
can look at if you wish and at the bottom of which will be the text:

{"color":"blue","docType":"car","make":"Toyota","model":"Prius","owner"
:"Tomoko"}

As you can see, this is the definition of first car, CAR0, from initLedger, showing that
both initLedger and queryCar have worked as expected.

__ 26. Now you can spend a little time querying the other cars in the range CAR0
through CAR9 and looking at the docker logs output and comparing them to the
corresponding values in initLedger. To see at the docker logs output, switch back to the
Terminal view and press the “up-arrow” key to choose the same docker logs
command again. If you have trouble doing this, you can just re-enter it as shown above.

IBM Blockchain

IBM Blockchain Platform Labs 20 Lab 3

__ 27. Next, try entering an invalid car index, such as CAR99 and again looking at the
docker logs output. This time you will see text containing the error as thrown by
queryLedger. The error is shown twice, from where it was handled at different places in
the framework code. The first error also shows the file and line number where the error
was thrown from which in this case is fabcar.js:87 and if you look at line 87 in
fabcar.js you can see the throw statement:

throw new Error(`${carNumber} does not exist`);

The two errors you see will look like this:

ERROR [contracts-spi/chaincodefromcontract.js]
{"message":"CAR99 does not exist","stack":"Error: CAR99 does not
exist\n at FabCar.queryCar (/usr/local/src/lib/fabcar.js:87:19)\n
at <anonymous>\n at process._tickCallback
(internal/process/next_tick.js:188:7)"}

ERROR [lib/handler.js]
[mychannel-65455332]Calling chaincode Invoke() returned error response
[Error: CAR99 does not exist]. Sending ERROR message back to peer

Now we are going to use an application outside on VSCode to perform a query instead
of using the docker logs. Several applications come with the fabcar sample for calling
the different transactions, and we are going to edit the query one to use the local_fabric
blockchain created by VSCode.

First, we will remove the fabcar smart contract folder from the VSCode workspace.

__ 28. Switch to the Explorer view in VSCode.
Note: If you are having problems and cannot see the Explorer view for any reason, click
on its icon in the activity bar () or press “ctrl + shift + e” to show it.

IBM Blockchain

IBM Blockchain Platform Labs 21 Lab 3

__ 29. Right click on the javascript folder in the Explorer view and chose the “Remove
Folder from Workspace” context menu option.

Note: The “IBM Blockchain Platform Home” page may automatically open once the
fabcar folder has been removed from the workspace. If it does, simply close it by
clicking on the “x”.

Note 2: Do not close the fabcar.js file which should still be open as you may want to
refer to it later in this lab

__ 30. In the empty workspace, click the Add Folder button from the Explorer view as
shown below:

IBM Blockchain

IBM Blockchain Platform Labs 22 Lab 3

__ 31. Using the screen shot below as a guide, navigate to open a folder as follows:
Step 1: Click in the workspace folder on the bottom left of the dialogue.
Step 2: Navigate to the folder:
fabric-getting-started/fabric-samples/fabcar
Step 3: Select the folder javascript
Note that this is a different javascript folder to the one used by the contract earlier.
Step 4: Click the Add button on the bottom right.

Note: the full path to the javascript folder you are importing for reference is:
/home/blockchain/workspace/fabric-getting-started/fabric-
samples/fabcar/

Note 2: The “IBM Blockchain Platform Home” page may automatically open once the
javascript folder has been added to the workspace. If it does, simply close it by clicking
on the “x”.

IBM Blockchain

IBM Blockchain Platform Labs 23 Lab 3

__ 32. Once the folder is added to the workspace, double click on the query.js
application to open it in the main editing view.

Have a look at the source code for query.js. This is a simple application designed to
connect to a Hyperledger Fabric network and issue an evaluateTransaction. An
evaluateTransaction is a transaction that does not get sent for ordering into a block
and so is normally used for query transactions.

This sample application is designed to connect to a sample network that comes with
the fabric-samples. However, we need to change it to connect to the network that
VSCode has created so we can query the ledger we have been using earlier in this lab.

But before we can edit the application, we first need to export the connection details
from the VSCode network so we can use them in our query application.

__ 33. Click on the IBP icon in the sidebar to switch to the IBM Blockchain Platform
view.

Note: The “IBM Blockchain Platform Home” page may automatically open again, and
if it does, simply close it by clicking on the “x”.

IBM Blockchain

IBM Blockchain Platform Labs 24 Lab 3

__ 34. In the LOCAL FABRIC OPS view, Right click on the peer0.org1.example.com
and choose the Export Connection Details option

You should see an informational message telling you the export was successful:

The full path of the export is:

/home/blockchain/workspace/fabric-getting-started/fabric-
samples/fabcar/javascript/local_fabric

This shows that the connection details have been exported into a folder called
local_fabric inside the javascript folder we opened earlier to load the fabcar sample
applications. The path is also shown in the output view and the new local_fabric folder
is shown in the explorer view as well.

__ 35. Switch back to the explorer view and you should see the newly created
local_fabric folder under the main javascript one:

Note: If you do not see the local_fabric folder, click the refresh icon on the workspace
bar just above the javascript folder:

IBM Blockchain

IBM Blockchain Platform Labs 25 Lab 3

__ 36. Expand the local_fabric folder and have a look at what was exported:

You can see it has exported two main things. Firstly, there is a connection.json file that
contains the details about where the local_fabric blockchain is running. Secondly,
there is a wallet folder inside of which is an identity for the administrator of this
blockchain peer, called Admin@org1.example.com along with their keys required for
connection.

Feel free to open up these files and take a look at the details, but be careful not to make
any changes to them. Make sure you close them without saving once you are finished.

__ 37. In the Open Editors part of the Explorer view, right click on the query.js file
and choose Open in Terminal:

IBM Blockchain

IBM Blockchain Platform Labs 26 Lab 3

__ 38. At the Terminal prompt type npm install and press enter. This installs the node
modules required by the applications like query.js in the fabcar javascript folder. This
will take a few minutes as it downloads the modules and when it is complete, your
Terminal should look similar to this:

IBM Blockchain

IBM Blockchain Platform Labs 27 Lab 3

__ 39. We will now make a few simple changes to query.js to make it work with the
local_fabric network. You can copy and paste or type these changes manually into
query.js:

Line 11: This line resolves the path to the connection profile to use to connect to the
network. As we need to use the one from local_fabric, change the line to be:

const ccpPath = path.resolve(__dirname, 'local_fabric', 'connection.json');

Line 19: This line gets the path to the wallet to use. As we again need to use the one
form local_fabric, change the line to be:

const walletPath = path.join(process.cwd(), 'local_fabric/wallet');

Line 24: This line loads the user from the wallet and as we are using a different user
from local_fabric, we need to change the line to be:

const userExists = await wallet.exists('Admin@org1.example.com');

Line 26: This line simply logs an error if the user does not exist, so for completeness
change the text "user1" to be "Admin@org1.example.com".

Line 33: This line connects to the network gateway using a specific user, so again
change the text "user1" to be "Admin@org1.example.com".

Line 44: This line actually calls evaluateTransaction to issue the specified transaction.
As we want to query a single car, CAR0, rather than all cars, change the line to call the
queryCar transaction that we called earlier from within VSCode, passing in CAR0 as a
parameter:

const result = await contract.evaluateTransaction('queryCar','CAR0');

Line 45: This line logs the result from calling the transaction to the console. As we want
the output to format properly at the console, change this line to be:

console.log(`Transaction has been evaluated, result: ${JSON.parse(result)}`);

__ 40. Save the file by pressing ctrl + s or use the File / save menu option.

IBM Blockchain

IBM Blockchain Platform Labs 28 Lab 3

__ 41. From the Terminal type node query.js and press enter to run the command. If
you have made the above edits correctly, you should see output like this below:

As you can see, the output is the same output for CAR0 that we got earlier which is a
blue Toyota Prius, owner by Tomoko.

Next we are going to call the changeCarOwner transaction to update the owner of
CAR0, and then we will query the ledger again to see the result.

__ 42. Switch back to the IBM Blockchain Platform view by clicking on the IBP icon in
the sidebar:

__ 43. Expand myChannel and the FabCar contract so you can see the transactions.

IBM Blockchain

IBM Blockchain Platform Labs 29 Lab 3

__ 44. Before we call it, let’s take a look at the changeCarOwner transaction
implementation. The definition is between lines 140-150 of fabcar.js which should still
be open in your workspace from earlier. It is a relatively simple transaction that takes
two parameters, the car and a new owner and first looks for the car that was passed
into the transaction as a parameter. If it does not find it, it will throw an error back to
the user. However, if it exists, it will de-serialise it, update the owner and then store it
back in the world state with the putState method.

Note: If you have closed fabcar.js you can reopen the it from the File / Open menu,
from this path:

workspace/fabric-getting-started/fabric-samples/chaincode/fabcar/javascript/lib/fabcar.js

__ 45. Right click on the changeCarOwner transaction under the FabCar contract in
the FABRIC GATEWAYS view, and choose Submit Transaction.

__ 46. In the dialogue at the top of the screen enter the text CAR0,Matthew and
press “Enter”. Note that you should not enter any quotes or spaces around this string
as otherwise they will be taken as part of the string itself which will result in an error.

When the transaction has finished, you should see the information message:

Note: If instead you get an error, you may have entered the string incorrectly. You can
check the docker logs for an error as you did earlier in this lab and try this step again.

IBM Blockchain

IBM Blockchain Platform Labs 30 Lab 3

__ 47. Once the transaction has been successfully submitted, back in the Terminal
window, enter node query.js again the see the resulting changes.

You should be able to see that the owner for CAR0 has been updated to Matthew.

We will now make one final change to the ledger, by creating a new car using the
createCar transaction. As we did with queryCar, look at the createCar transaction in
fabcar.js. It is defined between lines 93-106 and takes 5 caller-passed-in parameters:
carNumber, make, model, color and owner. The transaction uses these parameters to
create an object with the parameters and passes a serialised version of the object to
the putState method.

__ 48. As you did with queryCar above, right click on the createCar transaction under
the FabCar contract in the FABRIC GATEWAYS view, and choose Submit Transaction.

__ 49. In the dialogue at the top of the screen enter the text for your new car, using
CAR10 as the first parameter as that is the next index available. Enter some value of
your choice like CAR10,black,Tesla,Model X,Matthew and press “Enter”. Note that
you should not enter any quotes or extra spaces around this string as otherwise they
will be taken as part of the string itself which will result in an error.

__ 50. When the transaction has completed successfully, update query.js to query for
the car with the index you created, in this case CAR10.

Note: Remember to save the file before you run it.

IBM Blockchain

IBM Blockchain Platform Labs 31 Lab 3

__ 51. Run node query.js again from the Terminal as you did before.

You should see the details of the new car in the output window:

__ 52. We are now coming towards the end of part two of this lab. In case you have
some spare time, here are a few slightly more advanced (but optional things) you could
try if you want to branch out a little on your own.

First you could update query.js to run queryAllCars to return the details of all cars
instead on just one.

Secondly, you could look at another application that comes with the fabcar sample –
invoke.js which you can find in the same folder as query.js. This is a very similar
application to query.js except that it uses submitTransaction instead of
evaluateTransaction to make changes to the ledger.

Following the steps above for updating query.js to use the local_fabric blockchain
network, you could make the same changes to invoke.js so it can create another new
car in the local_fabric network from the Terminal instead of using VSCode to do it.
Remember to run query.js afterwards to make sure your new car made it to the ledger.

We have now almost completed this lab – using an existing contract. All that remains is
to clear up the environment ready for the next lab.

__ 53. From the IBP Smart Contract Packages view, right-click on the fabcar@1.0.0

package and choose the Delete Package option as shown below to remove it:

IBM Blockchain

IBM Blockchain Platform Labs 32 Lab 3

__ 54. From the FABRIC GATEWAYS view, select the Disconnect from Gateway icon
as shown below:

__ 55. From the LOCAL FABRIC OPS view, click on the … and select the “Teardown
Fabric Runtime” option from the context menu:

__ 56. From the dialogue the appears in the bottom right, choose the “Yes” button:

__ 57. Switch back to the Explorer view and close all open editors in the Open Editors
view, including the “IBM Blockchain Platform Home” by clicking on the “x” button on
each one in turn:

IBM Blockchain

IBM Blockchain Platform Labs 33 Lab 3

__ 58. Right click on the “javascript” folder and chose the “Remove Folder from
Workspace” context menu option.

Note: if you cannot see the Explorer view, click on the Explorer icon again to make it
re-appear.

__ 59. This may re-open the “IBM Blockchain Platform Home” page and leaves your
workspace ready for the next lab as shown below:

__ 60. We have now completed this lab – Using an Existing Contract and we hope
you enjoyed it.

IBM Blockchain

IBM Blockchain Platform Labs 34 Lab 3

