

IBM Blockchain Hands-On
IBM Blockchain Platform Visual Studio Code Extension:

Import Commercial Paper Sample
Lab Five

Table of Contents

Disclaimer ... 3

1 Overview of the lab 5 environment and scenario ... 5

1.1 Lab 5 Scenario ... 6

2 Lab 5: Import Commercial Paper Sample ... 8

IBM Blockchain

IBM Blockchain Platform Labs 3 Lab 5

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion. Information regarding potential future
products is intended to outline our general product direction and it should not be relied on in
making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,
or legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve
results like those stated here.

Information in these presentations (including information relating to products that have not
yet been announced by IBM) has been reviewed for accuracy as of the date of
initial publication and could include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is distributed “as is”
without any warranty, either express or implied. In no event, shall IBM be liable for any
damage arising from the use of this information, including but not limited to, loss of data,
business interruption, loss of profit or loss of opportunity. IBM products and services are
warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously installed. Regardless,
our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,
isolated environments. Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which
IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent
session speakers, and do not necessarily reflect the views of IBM. All materials and

IBM Blockchain

IBM Blockchain Platform Labs 4 Lab 5

discussions are provided for informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual participant or their specific
situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s business and any
actions the customer may need to take to comply with such laws. IBM does not provide legal
advice or represent or warrant that its services or products will ensure that the customer
follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested
those products about this publication and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products. IBM does not
warrant the quality of any third-party products, or the ability of any such third-party products
to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or
implied, including but not limited to, the implied warranties of merchantability and fitness
for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any
right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in
the presentation] are trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2019 International Business Machines Corporation. No part of this document may be
reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM.

IBM Blockchain

IBM Blockchain Platform Labs 5 Lab 5

1 Overview of the lab 5 environment and scenario

This lab is a technical introduction to blockchain, specifically smart contract development
using the latest developer enhancements in the Linux Foundation’s Hyperledger Fabric v1.4
and shows you how IBM’s Blockchain Platform’s developer experience can accelerate your
pace of development.

Note: The screenshots in this lab guide were taken using version 1.31.1 of VSCode, and version
0.3.0 of the IBM Blockchain Platform plugin. If you use different versions, you may see
differences those shown in this guide.

Start here. Instructions are always shown on numbered lines like this one:

__ 1. If it is not already running, start the virtual machine for the lab. The instructor will tell

you how to do this if you are unsure.

IBM Blockchain

IBM Blockchain Platform Labs 6 Lab 5

__ 2. Wait for the image to boot and for the associated services to start. This happens
automatically but might take several minutes. The image is ready to use when the
desktop is visible as per the screenshot below.

If it asks you to login, the userid and password are both “blockchain”.

1.1 Lab 5 Scenario

In this lab, we will import the Commercial Paper sample into VSCode and modify the
Smart Contract to add a new transaction while also leveraging features of the IBM
Blockchain Platform extension for VSCode to update an existing version of the Smart
Contract running in the local_fabric runtime and generating tests for the Smart
Contract transactions.

Note that if you get an “Software Updater” pop-up at any point during the lab, please
click “Remind Me Later”:

IBM Blockchain

IBM Blockchain Platform Labs 7 Lab 5

IBM Blockchain

IBM Blockchain Platform Labs 8 Lab 5

2 Lab 5: Import Commercial Paper Sample

As mentioned above, this lab will be using the Hyperledger Fabric “Commercial Paper”
tutorial. The full version of this tutorial is available online and we will be using a
simplified version of it.

The scenario the tutorial follows is one of a commercial paper trading network called
PaperNet. Commercial paper itself is a type of unsecured lending in the form of a
“promissory note”. The papers are normally issued by large corporations to raise funds
to meet short-term financial obligations at a fixed rate of interest. Once issued at a
fixed price, for a fixed term, another company or bank will purchase them at a discount
to the face value and when the term is up, they will be redeemed for their face value.

As an example, if a paper was issued at a face value of 10M USD for a 6-month term at
2% interest then it could be bought for 9.8M USD (10M – 2%) by another company or
bank who are happy to bear the risk that the issuer will not default. Once the term is up,
then the paper could be redeemed or sold back to the issuer for their full face value of
10M USD. Between buying and redemption, the paper can be bought or sold between
different parties on a commercial paper market.

These three key steps of, issue, buy and redeem are the main transactions in a
simplified commercial paper marketplace, which we will mirror in our lab. We will see a
commercial paper issued by a company called MagnetoCorp and once issued on the
PaperNet blockchain network, another company called DigiBank will first buy the paper
and then redeem it.

In diagram form it looks like this:

So, let’s begin!

IBM Blockchain

IBM Blockchain Platform Labs 9 Lab 5

__ 3. Launch VSCode by clicking on the VSCode Icon in the toolbar.

__ 4. When VSCode opens, click on the IBM Blockchain Platform (IBP) icon in the Activity
Bar in VSCode as shown below.

IBM Blockchain

IBM Blockchain Platform Labs 10 Lab 5

__ 5. Navigate to the IBM Blockchain Platform Home page and click the Commercial Paper

link under Samples.

__ 6. The Commercial Paper Sample tab opens. Clone the samples repository by clicking on
the Clone button as shown below.

__ 7. At the next panel, select the workspace folder and click the Clone Repository button.

IBM Blockchain

IBM Blockchain Platform Labs 11 Lab 5

__ 8. Scroll down in the Commercial Paper Sample page and under Smart Contracts, click

Open Locally next to MagnetoCorp Contract.

IBM Blockchain

IBM Blockchain Platform Labs 12 Lab 5

__ 9. Select Add to workspace at the Choose how to open the sample files prompt.

__ 10. Select the Explorer icon in the Activity Bar in VSCode as shown below, expand

the lib folder and click the papercontract.js file.

IBM Blockchain

IBM Blockchain Platform Labs 13 Lab 5

__ 11. The Commercial Paper contract is more sophisticated than the contracts we
saw in earlier labs, but it mostly works the same way. The main
CommercialPaperContract class starts on line 31, and if we use the “-” buttons in the
VSCode editor to fold methods of this class we can see that the main transactions are
instantiate, issue, buy and redeem.

IBM Blockchain

IBM Blockchain Platform Labs 14 Lab 5

__ 12. Let’s expand the issue transaction and perform a quick review on what it will
do in case you did not complete the previous lab.

Line 68 creates a new CommercialPaper object from the parameters passed in using
the static createInstance method on the CommercialPaper class. This class is defined
in the separate “paper.js” file which is also if the lib folder alongside papercontract.js
if you want to take a look at this method.

Line 72 Then moved the newly created paper into the ISSUED state and on line 74 it
has its owner set from the parameters passed in.

Line 77 adds the paper to a “paperList” which is responsible for storing the state of the
paper in the world state. This is defined in the paperlist.js file if you want to take a
deeper look.

Line 80 then returns a serialized form of the paper to the client who called this
transaction.

Feel free to have a look at the other files that make up the commercial paper smart
contract. If you want to delve even deeper into the design of the CommercialPaper
contract, there is much more information online if you have time to take a look.

Now we are going to install the papercontract onto a peer in the local_fabric network.

__ 13. Click on the IBM Blockchain Platform (IBP) icon in the Activity Bar in VSCode as

shown below.

IBM Blockchain

IBM Blockchain Platform Labs 15 Lab 5

__ 14. Start the local_fabric by hovering over the … next to LOCAL FABRIC OPS and
selecting Start Fabric Runtime.

__ 15. The local_fabric runtime is successfully started when you see the following
messages in the console pane. You are automatically connected to the local_fabric
runtime.

__ 16. Now we will package the Commercial Paper Smart Contract. Click the + next to
Smart Contract packages to Package a Smart Contract Project.

__ 17. The papernet-js@0.0.1 Smart Contract appears under the list of smart
contract packages as shown below.

IBM Blockchain

IBM Blockchain Platform Labs 16 Lab 5

__ 18. Now we will install the Smart Contract. Under LOCAL FABRIC OPS, click +

Install.

__ 19. Select peer0.org1.example.com at the Choose a peer to install the smart
contract on prompt.

__ 20. Select papernet-js@0.0.1 at the Choose which package to install on the peer
prompt.

When the package is installed, an information message will be shown confirming the
install:

Now under Installed for Smart Contracts you can see the installed contract:

IBM Blockchain

IBM Blockchain Platform Labs 17 Lab 5

__ 21. Next, we have to instantiate the contract. Click + Instantiate under LOCAL
FABRIC OPS.

__ 22. Select myChannel at the Choose a channel to instantiate the smart contract on
prompt.

__ 23. Select papernet-js@0.0.1 at the Choose a smart contract and version to
instantiate prompt.

IBM Blockchain

IBM Blockchain Platform Labs 18 Lab 5

__ 24. In the pop-up dialogue box at the top of the screen asking “optional: What
function do you want to call? …” make sure you enter the word instantiate into the
entry field as shown below. Before you press enter, check your spelling and make sure
it is correct and is all lowercase without any quotes or spaces around it. This name has
to exactly match the name of the transaction in your contract that will be called at
instantiate time and in our default contract as we saw above this is called instantiate.

In the next dialogue that asks for parameters to the function, just press “Enter” as our
instantiate function does not require any apart from the context “ctx” which is
automatically provided by the framework.

Instantiating a contract can take several minutes as a new docker container is built to
contain the contract. Whilst it is happening you should see this information message

When it is complete you will see this information message

Once complete, the “LOCAL FABRIC OPS” view under Instantiated will change to
show the Smart Contract, papernet-js@0.0.1 to be instantiated.

IBM Blockchain

IBM Blockchain Platform Labs 19 Lab 5

__ 25. Now we will modify the Smart Contract to add a getPaper transaction. Return

to the explorer activity, expand the lib folder and double click on the papercontract.js
smart contract to open it (if not already open) in the main editing view:

__ 26. We looked at the issue transaction in the papercontract earlier in this lab, but
now we are going to create a new transaction called getPaper. It is going to be a simple
transaction that just returns the paper that was requested as a parameter. We are going
to insert it between the existing instantiate and issue transactions.

/**
 * Get commercial paper
 * @param {Context} ctx the transaction context
 * @param {String} issuer commercial paper issuer
 * @param {Integer} paperNumber paper number for this issuer
*/
async getPaper(ctx, issuer, paperNumber) {
 try {
 console.log("getPaper for: " + issuer + " " + paperNumber);

 let paperKey = CommercialPaper.makeKey([issuer, paperNumber]);
 let paper = await ctx.paperList.getPaper(paperKey);
 return paper.toBuffer();

 } catch(e) {
 throw new Error('Paper does not exist' + issuer + paperNumber);
 }
}

IBM Blockchain

IBM Blockchain Platform Labs 20 Lab 5

If you copy the code above, a handy capability in VSCode is to reformat the code so it
has the appropriate indentation and tabs. To reformat the code you pasted in, select
the code, right click and select Format Selection.

You can either copy the code above or type it in yourself, but make sure it is correct
and in the right place as shown in the screenshot below:

IBM Blockchain

IBM Blockchain Platform Labs 21 Lab 5

Notice how the new getPaper code is placed after the instantiate transaction finishes,
and before the issue transaction begins.

__ 27. Make sure you save the changes, using the File / Save option or press ctrl + s

Note that when a file has changes pending it will have a filled in circle in its tab:

 when it is saved this will change to an X:

IBM Blockchain

IBM Blockchain Platform Labs 22 Lab 5

__ 28. When the papercontract.js file is saved, click on the IBM Blockchain Platform
icon in the sidebar to switch to the IBM Blockchain Platform view so we can use the
IBM Blockchain Platform to simplify the smart contract upgrade experience.

__ 29. Click on Admin@org1.example.com under local_fabric. Expand the channel
mychannel and the previously instantiated papernet-js@0.0.1 contract to see the
transactions available:

To change an instantiated contract, Hyperledger Fabric requires that we upgrade the
existing contract to the new version. To do this we must increment the version number
of the contract and make sure the name of the package will match the contract we are
upgrading.

__ 30. Switch to the Explorer view in VSCode.

Note: If you are having problems and cannot see the Explorer view for any reason, click
on its icon in the activity bar () or press “ctrl + shift + e” to show it.

IBM Blockchain

IBM Blockchain Platform Labs 23 Lab 5

__ 31. Double click on the package.json file in the contract folder to open it for
editing:

Lines two and three of the package.json file define the name and version of the
contract package. Currently the name is papernet-js and the version is 0.0.1:

__ 32. Change the version to be 0.0.2:

__ 33. Make sure you save the changes, using the File / Save option or press ctrl + s

__ 34. Switch back to the IBM Blockchain Platform view:

IBM Blockchain

IBM Blockchain Platform Labs 24 Lab 5

__ 35. From the Smart Contract Packages pane, click the + to package the contract:

Note: The + only appears when you move your mouse over the Smart Contract
Packages bar.

When the packaging is complete, you will see an informational message:

Also the package will appear in the Smart Contract Packages pane:

Note: Make sure that your package has got the correct name and version. If you don’t
see it, make sure you changed the version correctly as instructed above.

__ 36. To upgrade the contract to the new version that contains our getPaper
transaction, right click on the existing papercontract@0 instantiated contract and
choose the Upgrade Smart Contract menu option:

IBM Blockchain

IBM Blockchain Platform Labs 25 Lab 5

__ 37. From the “Select the smart contract version to perform an upgrade with”
pop up at the top of the screen, choose the papernet-js@0.0.2 Packaged option:

From the “Choose a peer to install the smart contract on …” pop up menu, select
peer0.org1.example.com as shown below.

From the “optional: What function do you want to call…” pop up menu, enter the
word instantiate as shown below. Remember this has to be entered exactly as shown:

In the next dialogue that asks for parameters to the function, just press “Enter” as our
instantiate function does not require any additional parameters:

IBM Blockchain

IBM Blockchain Platform Labs 26 Lab 5

Upgrading a smart contract can take several minutes as a new docker container is built
to contain the new contract. Whilst it is happening you should see this information
message

When it is complete you will see this information message

Once complete, the “LOCAL FABRIC OPS” view under Instantiated will change to
show papernet-js@0.0.2 at the same level as the peer peer0.org1.example.com.

IBM Blockchain

IBM Blockchain Platform Labs 27 Lab 5

__ 38. Expand the newly upgraded contract papernet-js@0.0.2, and you will see the
new getPaper transaction is now available:

Note: If you don’t see the getPaper transaction, make sure you edited the
package.json and papercontract.js and saved the changes.

__ 39. Now we will generate a functional test module for the Smart Contract. Right
click on papernet-js@0.0.2 and select Generate Smart Contract Tests.

__ 40. From the “Choose preferred test language…” pop up menu, select
JavaScript.

When the npm install of dependencies is completed, you will see the Successfully
generated tests message.

IBM Blockchain

IBM Blockchain Platform Labs 28 Lab 5

__ 41. Now let’s review the newly generated functional test module,
org.papernet.commercialpaper-papernet-js@0.0.2.test.js that opens in VSCode.

Take a look at the code for the generated functional test module. The line numbers
below may vary slightly depending on much whitepaper you added when inserting the
getPaper transaction. The main points are:

Lines 21-24: import various dependencies

Line 28: Create a new Gateway

Line 40: Load the connection profile from file system

Line 44: Load the identity from the wallet on the file system

Line 49: Connect to the gateway before each request

Line 118: Get the mychannel channel from the gateway

Line 119: Get the papercontract contract from the gateway

Line 120: Use the contract to submit the getPaper, issue, buy or redeem transaction,
passing in the transaction name as well as details associated with the commercial
paper associated with that particular transaction.

Line 121: Return the response buffer

__ 42. Scroll down in the org.papernet.commercialpaper-papernet-js@0.0.2.test.js
functional test module to the getPaper transaction test and replace the TODO sections
of the code as shown below. The getPaper transaction test begins with it('getPaper',
async () => {

BEFORE

 // TODO: Update with parameters of transaction
 const args = [''];

 AFTER

const args = ['MagnetoCorp', '00001'];

IBM Blockchain

IBM Blockchain Platform Labs 29 Lab 5

BEFORE

// TODO: Update with return value of transaction
// assert.equal(JSON.parse(response.toString()), undefined);
AFTER

console.log('Process getPaper transaction response.');

 const CommercialPaper = require('../lib/paper.js');
 let paper = CommercialPaper.fromBuffer(response);
 console.log(`${paper.issuer} commercial paper :
${paper.paperNumber} successfully retrieved with owner ${paper.owner}`);
 console.log('Transaction complete.');

The code show look as follows:

__ 43. Scroll down in the org.papernet.commercialpaper-papernet-js@0.0.2.test.js
functional test module to the issue transaction test and replace the TODO sections of
the code as shown below. The issue transaction test begins with it('issue', async () =>
{

BEFORE

 // TODO: Update with parameters of transaction
 const args = [''];

 AFTER

 const args = ['MagnetoCorp', '00001', '2020-05-31', '2020-11-30',
'5000000'];

BEFORE

// TODO: Update with return value of transaction
// assert.equal(JSON.parse(response.toString()), undefined);

AFTER

IBM Blockchain

IBM Blockchain Platform Labs 30 Lab 5

 console.log('Process issue transaction response.');
 const CommercialPaper = require('../lib/paper.js');
 let paper = CommercialPaper.fromBuffer(response);
 console.log(`${paper.issuer} commercial paper : ${paper.paperNumber}

successfully issued for value ${paper.faceValue}`);
 console.log('Transaction complete.');

The code show look as follows:

__ 44. Scroll down in the org.papernet.commercialpaper-papernet-js@0.0.2.test.js

functional test module to the buy transaction test and replace the TODO sections of the
code as shown below. The buy transaction test begins with it('buy', async () => {

BEFORE

 // TODO: Update with parameters of transaction
 const args = [''];

 AFTER

 const args = ['MagnetoCorp', '00001', 'MagnetoCorp', 'DigiBank',
'4900000', '2020-05-31'];

BEFORE

// TODO: Update with return value of transaction
// assert.equal(JSON.parse(response.toString()), undefined);

AFTER

 console.log('Process buy transaction response.');
 const CommercialPaper = require('../lib/paper.js');
 let paper = CommercialPaper.fromBuffer(response);
 console.log(`${paper.issuer} commercial paper :
${paper.paperNumber} successfully purchased by ${paper.owner}`);
 console.log('Transaction complete.');

The code show look as follows:

IBM Blockchain

IBM Blockchain Platform Labs 31 Lab 5

__ 45. Scroll down in the org.papernet.commercialpaper-papernet-js@0.0.2.test.js
functional test module to the redeem transaction test and replace the TODO sections
of the code as shown below. The redeem transaction test begins with it('redeem',
async () => {

BEFORE

 // TODO: Update with parameters of transaction
 const args = [''];

 AFTER

 const args = ['MagnetoCorp', '00001', 'DigiBank', '2020-11-30'];

BEFORE

// TODO: Update with return value of transaction
// assert.equal(JSON.parse(response.toString()), undefined);

AFTER

 console.log('Process redeem transaction response.');
 const CommercialPaper = require('../lib/paper.js');
 let paper = CommercialPaper.fromBuffer(response);
 console.log(`${paper.issuer} commercial paper :
${paper.paperNumber} successfully redeemed with ${paper.owner}`);
 console.log('Transaction complete.');

The code show look as follows:

IBM Blockchain

IBM Blockchain Platform Labs 32 Lab 5

__ 46. Make sure you save the changes, using the File / Save option or press ctrl + s

__ 47. Now let’s run our first test by issuing a new commercial paper. Scroll to the
issue transaction and click the Run Test link.

If successful, the successfully issued message and 1 passing message will appear as
below. The commercial paper was issued for MagnetoCorp.

__ 48. Now let’s view what is stored in the ledger. Scroll to the getPaper transaction

and click the Run Test link

If successful, the successfully retrieved message and 1 passing message will appear
as below. The commercial paper was retrieved for MagnetoCorp and is currently owned
by MagnetoCorp.

IBM Blockchain

IBM Blockchain Platform Labs 33 Lab 5

__ 49. Now let’s assume the role of Digibank and purchase the commercial paper
issued by MagnetoCorp. Scroll to the buy transaction and click the Run Test link.

If successful, the successfully purchased message and 1 passing message will appear
as below. The commercial paper was purchased by DigiBank.

__ 50. Run the getPaper transaction again as you did in a previous step above to see

the current state of the commercial paper. Note the owner of the commercial paper is
now Digibank as a result of the buy transaction.

IBM Blockchain

IBM Blockchain Platform Labs 34 Lab 5

__ 51. Now let’s assume the role of DigiBank and redeem the commercial paper

previously purchased by DigiBank. Scroll to the redeem transaction and click the Run
Test link.

If successful, the successfully redeemed message and 1 passing message will appear
as below. The commercial paper was redeemed by MagetoCorp.

__ 52. Run the getPaper transaction again as you did in a previous step above to see

the current state of the commercial paper. Note the owner of the commercial paper is
now MagnetoCorp again as a result of the redeem transaction.

__ 53. From the IBP FABRIC GATEWAY view, select the Disconnect from Gateway
icon as shown below:

IBM Blockchain

IBM Blockchain Platform Labs 35 Lab 5

__ 54. From the IBP FABRIC GATEWAY view, click the … and select Teardown

Fabric Runtime as shown below:

Click the Yes button to destroy all world state and ledger data.

__ 55. Switch back to the Explorer view and close all open editors in the Open Editors
view, including the “IBM Blockchain Platform Home” by clicking on the “x” button on
each one in turn:

__ 56. Right click on the cp-magnetocorp-contract-javascript top level folder and
select Remove Folder from Workspace.

IBM Blockchain

IBM Blockchain Platform Labs 36 Lab 5

__ 57. We have now completed this lab – Import Commercial Paper Sample and we

hope you enjoyed it.

